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Abstract

We construct manifold structures on various sets of solutions of the general relativistic initial
data sets.
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1. Introduction

A natural question that arises in general relativity is whether some sets of solutions of
the, say vacuum, constraint equations carry a manifold structure. For example, itis useful to
have a Banach manifold structure on the set of asymptotically flat solutions of the constraint
equations when trying to minimize the ADM m4d%s8,10] Appropriate manifold structures
allow one to use tools such as the Smale—Sard theorem, or the Baire category theorem, when
discussing genericity of some properties of solutions of the Einstein equations. The existence
of aFréchetmanifold structuréfor (a subset of) the set of solutions of the vacuum constraint
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equations on a compact manifold is a consequence of linearization stability studies of
Fischer, Marsden and Moncrief (S@®,21]and references therein, compaiteorem 4.5

The results there have also been studied in the context of asymptotically flat initial data sets
on a manifold with compact interior ifi].

While the above results might be satisfactory for several purposes, theyt tiad to a
Banachmanifold of solutions. In finite dimension there is no need to introduce a distinction
between Banach, or Hilbert, or Fréchet manifold structure; however, the differences are
significant in infinite dimension, because some facts which are true in Hilbert spaces are
not necessarily true in all Banach spaces. Similarly some properties of Banach spaces do
not carry over to Fréchet spaces. (The reader is referr§tBt84,25,29Jfor analysis on
infinite dimensional manifolds.)

In the asymptotically flat case an alternative method has been developed by R.Hartnik
constructing a Hilbert manifold structure on the space of solutions of the vacuum constraints,
essentially based on the conformal method. It uses a (weighted)#**+1 topologyx > 1,
on the space ofK, g)’s, and it is clear that the method generalizes to certain other settings
of interest. Such spaces are well adapted to the evolution problem, at leastaige
enough. However, in that method one does not have the flexibility in controlling boundary
or asymptotic behavior which is provided by the Corvino—Schdenl5] version of the
Fischer—Marsden—Moncrief approach.

The purpose of this note is to show thaBanachmanifold structure can be obtained by
a variation of the Fischer—Marsden—Moncrief-Corvino—Schoen method. It turns out that a
direct application of the standard a priori estimd&& for the construction below does not
seem to lead to a manifold structure based on Sobolev spaces, which would have been more
natural for the evolution problem, and which would have leditilbert manifold structure.
Instead, e.g. on compact manifolds without boundary, we obtain a manifold modeled on
(a subset of) the spa@@-® x C**, k > 4, € (0, 1) of symmetric tensors. This appears
somewhat surprising at first sight, as a natural set-up for the evolution problem (regardless
of the Sobolev versus Holder space issue) might seem to be one where the differentiability
of the extrinsic curvature tensdéf is one order less than that of the metgidOn the other
hand, sinceK’s can be thought of as variations g%, from a manifold structure point
of view it seems natural that th€’s live in a space with the same differentiability as
Whatever the natural space is, tie* x C*¢ topology or weighted versions thereof are the
ones which are obtained by the method here; this is a rather unexpected consequence of our
analysis in this paper. As already pointed out, and as made clear in the applications below,
the manifolds of initial data obtained here exhibit more structure than what is obtained by
the conformal method and its variations.

In our construction of the manifold structure we use a smoothing device to recover the
loss of regularity inherent to the Fischer—Marsden—Moncrief approach. This allows us to
work consistently in spaces with finite differentiability, leading to the Banach manifold
structure described above. We use a general approach of weighted spadé2hsvinich
allows a simultaneous treatment of the compact case with or without boundary, and of

3 R. Bartnik, in preparation; some similar ideas have also been considered by L. Andersson (private communi-
cation).
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the asymptotically flat case, and of the conformally compactifiable case, with families of
different topologies.

All the results presented below remain valid in thee-symmetrisetting,K = 0. This
implies that all the manifold structures presented here have their obvious counterparts for
the set of Riemannian metrics with prescribed scalar curvature.

This paper is organized as follows: $®ction 2ve review the framework dL2], and we
show how the results there can be used to define a local Hilbert manifold of solutions near
a given solution; the resulting manifolds can not be patched together in general because
of insufficient regularity of the operators involved. $ection 3we present our basic reg-
ularization procedure, which turns out to still be insufficient to provide a (global) Hilbert
manifold structure. 'Bection 4we therefore pass to an analysis in weighted Holder spaces.
We prove there that (the KID-free part of) the level sets of the constraints map are, globally,
embedded submanifolds in a Banach spaceTheerem 5.2under very general conditions
on the weights; this is the main result of the paper. In fact, we prove that the level sets of
the constraint map foliate (in a sense made precigeimark 5.1pthe KID-free part of the
space of al(K, g)’s. In Section 8ve show that the hypotheses madé&lreorem 5.2re ful-
filled on compact manifolds with or without boundary, or on asymptotically compactifiable
manifolds, or on asymptotically flat manifolds. Appendix Awe prove a lemma which
provides a submanifold structure in Banach spaces under rather general conditions, as well
as a foliation result. Ippendix Bwe present two regularization procedures in weighted
spaces, as needed in applications of the submariffiobrem 5.2For the convenience of
the reader those results frq@®] which play a key role in the current construction have been
presented in detail, including some introductory comments borrowed[ft@hwhenever
useful for the clarity of the argument.

2. The construction

Let

¢ (K, g) = (J(K, g), p(K, g)
be the general relativistioonstraints map

J . 2(—=V/Kjj + Vi trK)
<p>(K’ 8= (R(g)— |K|2+<trK>2—2A>’ 1)

whereA is the cosmological constant. (The functidhw/167G is the energy density of the
matter fields, while*J/ 167G is the energy—momentum flux vector.) The general relativistic
constraint equations agY K, g) = 0, whatever the space-dimensiorAs those equations
are trivial in space-dimension 0 and 1, in the remainder of this work we shall assume that
n>2.
Leth = g andQ = §K, the linearizationPx ) of the constraints map &K, g) reads
Pk, )(Q, h)
_ —KP;hpq + K9:(2V7 hgy — Vyh!)) — 2V7 Qj + 2V tr Q — 2(V; KPI — VIKP)hpq
T\ —A(trh) +divdivh — (b, Ric(g)) + 2KP K9 hpg — 2(K, Q) + 2tr K(—(h, K) +1tr Q) ]
(2.2)
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Recall that a KID is defined as a solution, Y) of the set of equationg’* K. g)(Y N) =0,
whereP(y ., is the formal adjoint ofPx o)

2(VYj — V'Yigij — KijN + tr KNgj)
VY, Ky — 2K VY + K9V, Y!gj
— ANg; + V;V;N + (VP Kipgij — ViKip)Y!
— N Ric(g)jj + 2NK!;Kji — 2N(tr K) Kj

Plk.o (Y, N) = (2.3)

We shall denote b7 (Q2) the set of KIDs defined on an open $etin vacuum space—times
(., g) KIDs on a spacelike hypersurfa€eare in one-to-one correspondence with Killing
vectors ofg [27] on the domain of dependence®@f A similar statement holds in electro-
vacuum for appropriately invariant initial data for the electromagnetic field, the reader is
referred tq9] for some comments about general matter fields.

Following[12], we will be using weighted function spaces defined as followsglatid
¥ be two smooth strictly positive functiohen M. Fork € N let Hg,w(g) be the space of

H,’(‘.)C functions or tensor fields such that the nérm

1/2

k
lutll gy = / > 7 IVOulZ ) y? dug (2.4)
" M \i=o
is finite, wherev® stands for the tensor - - - V , with V—the Levi-Civita covariant
~—itimes

derivative ofg; we assume throughout that the metric is at Ié@%fo; higher differentia-
bility will be usually indicated whenever needed. kot N we denote bﬁ’;,w the closure
in Hk of the space oH* functions or tensors which are compactly (up to a negligible set)

supported iV, with the norm induced fronﬂI" . TheH* s are Hilbert spaces with the
obvious scalar product associated to the n(ﬁm) We wfr | also use the following notation

Tk . Tk 2. 0

sothatL? = H° := A9 |. We set
Wy = {u € W suchthatg!|V©ul, e L)

with the obvious norm, and witii @ y—the distributional derivatives of.
For ¢ andg—smooth strictly positive functions oM, and fork € N anda € [0, 1], we
defineC’;;,‘; the space o€%¢ functions or tensor fields for which the norm

4 We use the analysts’ convention that a manifaldis always open; thus a manifolt¢ with non-empty
boundaryyM does not contain its boundary; insteadi;= M UM is a manifold with boundary in the differential
geometric sense. Unless explicitly specified otherwizeonditions onM are made—e.g. thatV/, if non-empty,
is compact—except thatl is a smooth manifold; similarly no conditions, e.g. on completene$afog), or on
its radius of injectivity, are made.

5 The reader is referred {d,5,23]for a discussion of Sobolev spaces on Riemannian manifolds.
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k
lull ke, = SUP lpd'VOu(x)||
Cop® — o ; g

P AL Ik L
Oc£dy (x.7)<(x)/2 dg(x, y)

is finite.
We will only consider weight functions with the property that there exdstsN U {oo}
such theft for 0 < i < ¢ we have

6 VOl < i 1TVl <G 19l V), < G (2.5)
for some constants;. The following situations seem to be of main interest:

e If M is compact without boundary we will uge= ¢ = ¢ = 1.

e If 9M is compact, smooth, and non-empty, we will usedoe x a function which is a
defining function for the boundary, at least in a neighborhood of the boundary; that is,
any smooth non-negative function @ such thabM is precisely the zero-level set of
x, with dx without zeros ordM. Thenyr andg will be a power ofx on a neighborhood
of aM. Condition(2.5)will hold for metrics which are smooth up-to-boundary n&a.

e If M contains an asymptotically flat regighwill behave as, while ¢ andy will behave
as a power of- in the asymptotically flat region(2.5) will hold for a large class of
asymptotically flat metrics.

e If M contains a conformally compactifiable region, then in a neighborhood of the con-
formal boundaryp will be taken to be 1, whiler will be a power of the defining function
of the conformal boundary.

e Exponentially weighted versions of the above will also be considered.

Inallthose situations one can obtain elliptic estimates in weighted spaces for the equations
considered here by covering and scaling arguments together with the standard interior
elliptic estimates on compact sets (cf., §33,6,11,22,26] We will refer to this aghe
scaling propertyMore precisely, we shall say thidte scaling propertyolds (with respect
to some weighted Sobolev spaces with weight functigrede, and/or weighted Holder
spaces with weight functiogsandg, whichever ones are being used will always be obvious
from the context) if there exists a coveringMfby a family of set€2,, for « in some index
setl, together with scaling transformatiops : Q, — Q, on each of the sef,, such that
the transformed field&K ., 2«) 0N are inf in W32°(Q,) x W4(,), and such that the
usual interior elliptic estimates on tif&,’s can be pieced together to a weighted estimate,
such ag4.7), for the original fields. Some sufficient conditions for the scaling property are
discussed if12, Appendix B] We note that the scaling transformation of the field$xn
(K, g) > (Kq, 24), Will typically consist of a pull-back of the fields, accompanied perhaps

6 Conditions(2.5) will typically impose¢ restrictions on the behavior of the metric and its derivatives in the
asymptotic regions; it is therefore essential to allow oo if one does not wish to impose an infinite number of
such conditions.

7 It is conceivable that in some situations less a priori regularity or( &g 2,)’s can be assumed, but this
is the setup which seems to play the most important role in our paper; the reader should be able to adapt the
differentiability conditions to his needs if required.
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by a constant conformal rescaling. The “scaling property” is a condition both on the metric
g, the extrinsic curvature tensd¢, and on the weight functions involved: indeed, both
the metric coefficients, the connection coefficients, as well as their derivatives, etc., which
appear in our equations must have appropriate behavior under the above transformations so
that the required estimates can be established.

Conditions(2.5) guarantee the following lemma.

Lemma 2.1. Letk € Z, k > —2. Suppose thitg € W5'3* and that
Ric(g) € ¢~ W™ (), (2.6)
K e W, 3% (g). 2.7)
If (2.5)holds withO < i < k + 2, then the linear operators
Pl o 1 HY () x HEVH o) — ¢ 7ML 2(g) x 92 2(9), k= =2, (2.8)
Pk ¥ (¢Hk (9) x $?HEM2(9)) — Y2 He) x HY ,(2), k=0, (29)

are well definedand bounded

The following operator is of interest in our context,

Ly = ¥ Pk, YO Py ), (2.10)
where® is defined by
D (x, y) 1= (¢x, 7). (2.11)

A useful inequality to make things work is the following:

CI® P 400 (F: Ml 12 (g0) = 1Y 12 50) + IV (212)

Hl 4 (&0

Let Kg be kernel of

® Plko.50) - Ll (g0) x H5,(30) > L5(30) x L5 (g0),

and letkC, %0 pe ItSLZ(go) ®L? 4 (g0)-orthogonal. We denote by Ls the L2 7(8) projec-

tion ontolCog. The following result, provetlin [12], is a weighted equivalent of those in
[13,14,16](compardg15]):

8 The local differentiability conditions follow from the requirement that tHefourth covariant derivatives of
N and thek+ third ones ofY can be defined in a distributional sense; both of those conditions are fulfilled by a
metricg € Wj5t>>°—the reader should note that the first covariant derivative d6 not involve the Christoffel
symbols ofg sinceN is a function.

9 Actually in [12] the hypothesis is made that the cosmological constargnishes, which is not assumed here
(comparg2.1)). The inclusion of a cosmological constant does not require any modifications of the proofs there,

insofar as the results discussed here are concerned.
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Theorem 2.2([12, Theorem 3.6] Letk > 0, go € W((;Jg“o" suppose tha2.5) holds with
0<i<4+k,that

. _ 2 _
Ric(go) € ¢ 2W; >®(g0). Ko € ¢~ W, > (g0),

and that the weightg andy have thescaling propertylf there exists a compact s.#” C
M such that for aIIHé’w(go) vector fields Y andlé,w(go) functions N both supported in

M\.# ,the inequality(2.12)holds thenforall(K, g) close ta(Ko, go) in ¢)_1W£+3’°O(go)x

W]‘Jr4 " (g0) norm the map

TeLoy Ko N (EE3(9) x HSHH9) — Ko N (B! o) x HY,,(9)
is an isomorphism such that the norm of its inverse is bounded independetRlyOf

We will see how to use this result, and certain variations thereof, to obtain a manifold
structure on various sets of solutions of the vacuum constraint equations. More generally,
one obtains a manifold structure on the set of initial data Withp)-fixed. Recall that a
Banach manifolds a Hausdorff topological spadé such that for every € M there exists
a neighborhoo%;, C M of p equipped with a homeomorphisg), from %, to an open
subsed, of some Banach spad,. The couplg€%,, ¢,), and sometimes simply the %,
will be called acoordinate patchOn overlapping coordinate patch#;;and%, the maps
dp od)q_l are supposed to be smooth diffeomorphisms from their dorggit%,N%;) C B,
to theirimage®,(%,N%,) C B,.One can similarly define the notion oHilbert manifold,
and of aFréchetmanifold.

A connected embedded submanifold of an open subset of a Banach space is always a
manifold modeled on any of its tangent spaces (which are all necessarily diffeomorphic,
compareCorollary 5.1). We will actually prove that the level sets of the constraint map form
embedded submanifolds in such a space, which will provide the desired manifold structure.

We start with the following observation.

Proposition 2.3 (Local Hilbert manifold (and submanifold))Jnder the hypotheses of
Theorem 2. Zsuppose that there are no KIDs

4t 3(20) x Hit(g0) D Ko = {0). (2.13)
Assume that the map

VA (PH 2 (30) x $7Hl 2 (30)) — HEH(g0)) x HE |, ((30)),

(8K, 8g) > 92 { ( :) [(Ko. g0) + (8K, 89)] — ( ;) (Ko, go)} (2.14)
is differentiable at zero. Then the set
So={(0. m) € VP! 2 g0d* il g0,
(4. P)(Ko+ Q. g0+ h) — (/. p) (Ko, g0) =0} (2.15)

is an embedded submanlfold@?@ka (g0) x ¢2Hk (g0)) in a neighborhood of zero
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Proof. A rather general justification is provided lhymma A.1 Appendix A by setting
u = Du(0) = y2d?Py v = Y2, p)(Ko + - go + ) — (. p)(Ko, g0)], Dv(0) =
V2 Piko.g0 E = Hiy' 2(20) x Hiy H(g0), F = v20(HY! (20) x Hly2(20)), andG =

H’“szl(go) X H’;5 w(go) The linear mag is continuous by.emma 2.1 hence differentiable,
whilevis differentiable by hypothesis. The required isomorphism proper$¢0)oDu(0)
follows from Theorem 2.2 O

Example 2.4. To motivate and illustrate the results so far, consider the case of a com-
pact manifoldM without boundary; other examples of interest will be treated in detail in
Section 6 We choose = ¢ = 1, so the spaces involved are standard Sobolev spaces. As
M is compactwe can tal.# = M so that conditiorf2.12)is trivially satisfied. The smooth-
ness hypotheses on the m@i2) are satisfied by standard calculus in Sobolev spaces. If
(Ko, go) isaCk*+* x C¥*+3initial data set without KIDsProposition 2.®rovides a manifold

of H¥*2 x H*+2 solutions of the constraint equations passing thraugh go).

Example 2.£learly exhibits an unfortunate differentiability mismatch, which leads to an
essential obstruction when trying to glue together the coordinate patches obtained so far, and
which therefore prevents one from obtaining a Hilbert manifold structure on the set of all
solutions of the constraints equations using the method aboS8eciion Sve will show that
a (different) manifold structure can nevertheless be obtained using the following approach:
consider adata séK1, g1) without KIDs in an appropriate Holder differentiability class, let
(6K1, 8g1) be a solution of the constraints with the same differentiability class, and suppose
that you can smooth oK1 + §K1, g1 + 8¢1) to asmoothset(K, g), in a way consistent
with the set-up offheorem 3.1If one can solve the equation

J
( p) (Ko + 8K. g0+ 88) + W2®2Ply (¥, N)

J 8J
- ( )(K0+3K, go+8g) = ( ) (2.16)
P 3p

then one has a better chance of ending in a space with the original differentiability.

3. Aregularized problem

The aim of this section is to implement the above in weighted Sobolev spaces. Consider
again a compact manifold without boundary, (&, g) be of Ckt2« x Ck+2« differen-
tiability class, and first regulariz€k, g) by the usual convolution method to obtain a new
smooth coupl€K,, g.), then define

P; = P:Ks’gs)'
Roughly speaking, the equation we will attempt to solve will(BeL6) with P 2 there

replaced byP;. The idea is to solve that equation fa¥, N) < C3* x C**, and then
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use elliptic regularity to get toY, N) € Ck+3¢ x Cck+42 gbtaining the desired extrinsic
curvature and metric i€¥ T2 x C¥+22: we emphasize that one wouft get that last
differentiability without the regularization. Somewhat more generally, letky < k — 2,

still in the compact boundaryless case one has the following convergence property, for
k> 2:

o ko+3 4 _ 2 _ 2
Pr— P*in L (g0) x Hi s (80). 6 HI 37 (80) x ¢ 2H 23 (30)),

which is precisely what is needed to make the arguments work. In general we will therefore
assume that we have a smoothing operating) — (K., g.) such that

(Ke. g6) —e0 (K. ) in ¢~ Wi 3% () x Wy (go). (3.1)

(In Appendix Bwe give conditions on the weight functions which guarantee that the smooth-
ing operation with the above properties exists.) This leads to the following variation of
Theorem 3.9 of12].

Theorem 3.1. Letk > 0, go € W(f;g“ *°, assume tha3.1) holds withkg = k and suppose

that(2.5)holds with0 < i < 4 + k. Assume moreover that
Ric(go) € ¢ 2W,*¥(g0), Ko € ¢ Wy (g0),

and that the weighte$ andy have thesocaling propertySuppose further that there exists a
compact se# C M such that for aIIHl’ (go) vector fields Y and?é_w(go) functions N
both supported i \ 7, the inequality(2.12)holds. If the weights are such that the map

0SS x HE M) > Ko 0 () x A L (9),
J J
(Y N) o 72 {( ) [(K. §) + V2O PL (Y. N)] — ( ) (K, g>} (32)
0 o p

is differentiable in a neighborhood of zetben it is bijective in gperhaps smallgmeigh-
borhood of zerpfor all ¢ small enough. In other word#or sufficiently smalk, there exists
8 > Osuch that for all(K, g) close to(Ko, go) in ¢—1Wk+3’°°(g ) x Wk+4’°°(go) and for

all pairs (8J, 6p) € wz(Hk”(g) x H* w(g)) with norm less thag, there exists a solution

(8K, 8g) = YD PL(Y, N) € Y2 (pHj P(2) x ¢°Hy 2 (9)), (3.3)

close to zerpof the equation
-2 J J _ 2 (8J
nKégw {(;0) (K + 6K, g+ 6g) — <,0> (K, g)} = H}Céglp (8,0) . (3.4)
The solutions of the forr{8.3) with sufficiently small norm are unique

Proof. Instead of(3.4)we consider the projection of the equation

J 202 (7 (8
<p>((Kag)+¢<ng(Y,N)) <p>(K,g)—<6p)- (3.5
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If & is small enough the(K, g.) is close to K, g) in ¢*1W£+3'°°(go) x W£+4’°O(go) thus

close to(Ko, go) in the same space. Because of the high differentiability threshold assumed
all the coefficients in the equations areliff., and it is easy to check that the operakgr
converges t@®* whene goes to zero in such a way that the estimates in Appendix[G2f
remain uniform. It follows that foe small enoughP; can be used in place &* to define

the right inverse needed in the arguments of Appendix 32f a

One would like to use elliptic estimate arguments to show th& ife) is smooth, and if
(8J, 8p) is smooth, then the solution is smooth. We have not been able to implement such
an argument in the spaces used above because of poor differentiability of the coefficients of
the equations. This has the effect that the size of the neighborhood for which the theorem
applies might depend updn This problem will be sidetracked by working in weighted
Holder spaces.

4. Analysis in weighted Holder spaces

Before passing to an analysis of the regularieedation (2.16)let us show that the
results established {12] can be used to obtain a Fréchet manifold of smooth solutions of
constraint equations without KIDs.

In order to obtain a coherent set-up in weighted Hélder spaces we will need to impose
some more conditions on the weight functiahs, andy:

1. First, note that2.5) can be rewritten ag < Cé‘q}_l, Ve Cé_wl_l, g€ Ci‘(pl_l. When
dealing with Holder spaces one also needs to assume Holder continuity of the derivative
weights, so (renaming— 1 to £) we will assume:

lo l,a 0,
¢ € C¢,¢rl’ Ve pr,l, Y e Cd),rp*l' (4.1)

2. As discussed ifiL2, Appendix B] the following conditions are useful for deriving the
scaling property: Let us denote I8y, the open ball of centegy with radiusg(p)/2. We
assume that there exist constafiis C», C3 > O suchthatforalp € M and ally € B,
we have

CTr(p) < 9(y) < C16(p), (4.2)
Co(p) < 9(y) < Can(p), (4.3)
C3M(p) < ¥(y) < Cav(p). (4.4)

3. Since the tool to handle non-linearities in this paper is the inverse function theorem, we
need to make sure that the changes in the initial data are small as compared to the data
themselves. A necessary condition for that is that the new metric be uniformly equivalent
to the original one. One way of ensuring this is

Y2$*Cly% (g0) C Ciy'i(20)- (4.5)

This will hold under the following condition.
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Proposition 4.1. The inequality
V220t < (4.6)
implies(4.5).

In order to check this the reader might wish to prove first that the conditions imposed
so far imply that

Lemmad4.2. Ifu € C o (8) andv € C (&) with one of they,’s satisfying(4.3)and

¢ satisfying(4. 1)w1th (= K thenu e C¢ 102(8)-

Lemma 4.2can be used to show an equivalentl@mma 2.1in weighted Holder
spaces.

Clearly all those conditions are fulfilled when= ¢ = v = 1; they will also be fulfilled
in the other examples of interest discusse8déttion 6
To proceed further some terminology will be needed.

Definition 4.3. We will say that an operatd: from H3 |, x 14 t0H} , x HS , satisfies
theweighted elliptic regularity conditioif there exists a constat such that for altY, N)
in 3, x A3 | satisfyingL(¥, N) € Cj71% x €% we have(Y, N) e Cy'>* x CjH4e
with

Y, a a<C L(Y, o, ke Y, . 4.7
ICE Nl sz i (n (YWl e gt + 1€ N)an,M;W) (4.7)

WhenL, , defined in(2.10)satisfies the weighted elliptic regularity condition one has
the following proposition.

Proposition 4.4 (Proposition 3.16 of12]). Letk € N, 0 < o < 1, assume tha{4.1)
with £ > k + 4 holds and that(4.2)—(4.4)and (4.6) hold. In addition to the hypotheses of
Theorem 3.Wwith ¢ = 0, suppose thago € Ck+*, and that

Ric(go) € 7 2C5"*“(20), Ko € ¢ 1CyH> % (g0).

We further assume that the weiglatsy and ¥ have thescaling propertySupposenext
that we have the continuous inclusions

Y2HPC,% 5 (8) C Hly (9) (4.8)

fori = k, k+ 1, with the inclusion norms uniformly bounded for g closgdin C’“r4 "“(g0).

Assume finally thaLy 4 (K, g) satisfies the weighted elliptic regularity condltlomth a
uniform constant C if4.7)for (K, g) close to(Ko, go) in ¢—1C"+3°‘(g0) x Ck+4“(go) If

the sourcés J, 8p) isin 1//2(H1 e ><H0 4(@) ﬂx/fz(thal “(g)x Cg “ (), with sufficiently
small norm then the solutlon obtamed “ﬁheorem 3. Wwithe = 0isin

VEGH2 ,(9) x 9P, (9) N YR(@C 2% (g) x $7Cl2% ().
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Proposition 4.4ives existence of Holder continuous solutions. We can apply the usual
bootstrap arguments to those solutions to obtain smoothness, when all the objects at hand
are smooth (compare the proofofieorem 4.3

Proposition 4.5(Proposition 3.17 0f12]). Letk € N, o € (0, 1), assume thag4.1) with
£ > k + 4 holds and that(4.2)—(4.4)and (4.6) hold. Suppose moreover that the scaling
property holds. Assume thek, g) € CKt3« x k42 and (Y, N) e Cg"l(g) X C¢ o). If

J
(p) [(K, &) + Y?P? Py (Y, N)] — ( ) [(K. g)] € Y2(CyHH4(9) x C% ().
(4.9)
then(¥, N) € Cj*>%(g) x Cyyt+*(g)), thus

(BK. 8g) € YA(@Cy 2% (8) x $°Cly 2% (9)). (4.10)

Example 2.4(continued). Applying the last two propositions to the setufxdmple 2.4

one finds that smooth solutions of the linearized constraint equations correspond to smooth
solutions of the full non-linear constraint equations. This leads then to a Fréchet mani-
fold of smooth solutions near every smooth solution. The argument at the end of proof of
Theorem 5.3ustifies the isomorphism property on the overlaps of the coordinate charts,
and we have therefore obtained the Fischer—Marsden—Moncrief result.

Theorem 4.6(Fischer et al[21]). Let M be a compact manifold with boundary. Then the
level setsS of the constraints map form a submanifold of the set of sm@&tlg)’s at all

(K, g) which have no KIDs. Each connected compor&nthereof is a Fréchet manifold
modeled orKer Pk o) C C™° x C*°, where(K, g) is an arbitrary element ofp.

Specializing all the considerations so far to the ckise Y = 0 one recovers a theorem
essentially due to Fischer and Marsden.

Theorem 4.7 (Fischer and Marsdefi9]). Let M be a compact manifold with boundary.
Then the level sets of the scalar curvature functional on the space of smooth metrics form a
submanifold at all g which do not correspond to the space-part of some static solution of the
vacuum Einstein equations with a cosmological constant. Each connected com@gnent
thereof is a Fréchet manifold modeled on the kernel of @Rcalculated at some arbitrarily
chosen metrig € So.

The argument of the proof dtheorem 3.Jalso establishes the following proposition.

Proposition 4.8. Under the conditions d?Proposition 4.4assume tha{3.1)holds and sup-
pose thaiy—2 Py &2 P* satisfies the weighted elliptic regularity conditjevith the constant
C in (4.7)being uniform for X, g) close to(Ko, go) in ¢~ le°+3 " (g0) X Ck°+4“(g0) and
¢ small enough. TheRroposition 4.4emains valid with k replaced o and P* replaced
by P} whene is small enough
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Our first main result is the equivalent Bfoposition 4.5with less regularity conditions
on(k, g).

Theorem 4.9. Letk € N, k > 2,« € (0, 1), assume that4.1) with £ > k + 4 holds and
that (4.2)—(4.4)and (4.6) hold. Under(3.1), suppose that the scaling condition holds for
¢ > 0.Assume thatk, g) € Ck+2% x Ck+2* and(Y, N) € c¢ 0@ x c¢ (). For e small

if

J
(p) [(K, &) + V> @*PE(Y, N)] — ( ) [(K. )] € Y2(Cyl(g) x Cl%(2)),

(4.11)
then(¥, N) € Cj">%(ge) x Cjt M (ge), thus

(8K. 8g) € Y2 (@Cy 2% (8) x $°Cly 2% (2)).

Remark 4.10. The appearance efin the claim tha(¥, N) € Ckff""(gg) X Ck+4°‘(gg) is
due to the fact thag is a priori not sufficiently differentiable to be able to deflne spaces
such ai‘(’;ff “(g¢). Any fixed metric uniformly equivalent tg, with appropriate weighted

differentiability properties, could be used insteagofn the definition of those spaces.

Proof. It suffices to rewrite the rescaled non-linear ellipgiguation (4.9¥or (Y, N) as a
linear elliptic equation foKY, N) and freeze coefficients (depending @ + 5K, g + 8g)
hence on(Y, N)). The interior Holder estimatg®8, Theorem 6.2.5, p. 223jn the sets

., appearing in the definition of scaling property give the local regularity, and the scaling
property gives the global weighted regularity. O

5. Banach manifold structure

Throughout this section the symbgd denotes a fixed metric with (local) regularity
cmtheon M.

Fork,l1 € {0, ... ,m+4},a € (0, 1) andg a metric inC™h-« e define the Banach
space

Ayl (8) =Hl ,(2) N C%(9),

equipped with a norm being the sum of the two norms. (It should be clear(#dr@)that
this is the topology which one needs to use on the space of the metrics when using the
methods described above.) Wher {0, ... , m + 2} and when(4.5) hold, we define the
following opensubset ofw2¢2A§"’fp’fj’“(go) of symmetric two-covariant tensor fields on
M:

At 70 = e W29?ATHIZ (g0,

go + h isametric uniformly equivalenttg)} .
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We note the continuous inclusions:
2, 2,k+2, 2, 2
ALt (g0) € YPPP AL E Y (g0) C P (g0)(C Wyt (g0)). (5.1)

We have the following lemma.

Lemma5.1. Letk € {0, ... ,m+2}andl € {0, ... , k+ 2}. Assumg4.1)—(4.5) Then for

allh e A’;Jrj;‘(go) we have

Cio(go+h) =Cyl (g0),  HYy(g0+h) =HY ,(30)
with equivalent norms. In particular

At (g0 + h) = AL (g0).

Proof. Letg = go + h, we defineT = I' — I'g, sinceg is uniformly equivalent tgo the
usual formula forT" allows one to estimate this b§|Voh|g,. By the middle inclusion in

(5.1)we then havd e ¢—1C(’;f11’°‘(go). For atenson, we have|u |, uniformly equivalent
to |lul,. For the derivatives we write

Vu = Vou + (V — Vo)u = Vou — Tu.

Ifu e Cl"" »(80) by the productemma 4.2ve obtainpVu € Cg”Z(g).The higher derivatives
follow by |nduct|on This shows tha(f¢ w(gO) C C¢ (p(g)
We note that the above implies thati € 2¢2C k””‘(g) and the reverse inclusion
follows by symmetry.
The proof for the Sobolev spaces is identical. |
Theorem 5.2. Letk € {2,... ,m} anda € (0, 1), and
Ric(go) € ¢2Cy5(s0), Ko € ¢~ *ChH%(g0). (52)

Suppose that the scaling property and the weighted regularity condition hotil that
(4.1)—(4.4)together with(4.6) are satisfied. Assume also that for'll

(Q, h) € YPHAL 2% (g0) x AGH (20) (53)

there exists a compact s#° ¢ M such that for aIIH(}, w(go) vector fields Y andi2 v/(go)
functions N both supported iV \ ¢, the inequality(2.12) holds with (K, go) there
replaced by(Ko + O, go + h). Supposgfurther, that for all (Q, &) as in(5.3)the map

(8K, ég) — (J, p)(Ko+ Q + 0K, go+ h +38g) — (J, p)(Ko + Q. go + h) (5.4)

is differentiable from a neighborhood of zero |¢2¢H 4(80) X w2¢>2H (20

to wzHé (g0) X V2 H¢ +(80)- Consider any non-empty connected component of the set of
KID-free Ievel sets

10 Actually it suffices to assume that this hypothesis holdS g, -
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2 2,k+2, k+2,
Siupo=1{(0. 1) € WPHATHIZ (g0) x AT (50,

(J, p)(Ko+ Q. go +h) = (Jo, po), Ker P . o1y = {0}} ~ (5.5)

If there exists a smoothing operatiaja 1)with kg = 0, thenS, ,, is an embedded sub-

manifold ofxﬂ%AéfZ; *(go) x A¢ w 0 “(20)-

Remark 5.3. Differentiability of the map(5.4) in weighted Sobolev spaces typically re-
quiresk > n/2, this can be actually avoided by requiring instead differentiabilit{sof)

2,k+2, 2,k+2, Lk+1, 0.k,
as amap fromp2pA; "% (go) x Y2d? A’ o (g0) O Y2 AL T (g0) X Y2 A% (0).
Remark 5.4. We note that a necessary condition &y, ,, # ¥ is
- 1
Jo € $7%Cy " (30),  po€ ¢ 2Cy(80). (5.6)
In any case it seems that the situation of main interegs is pp = 0.

2
Remark5.5. The kernelin(5.5)is that of the operato?KMQ o+th acting fromH?! sy xHg

togp 1HY  x ¢~ 2HO . We note that elliptic regularity shows that elements of the kernel
are as éﬁ #/erentlable as the metric allows, so the elements of the kernel are continuously
differentiable solutions satisfying appropriate asymptotic properties.

Remark 5.6. We do not assume thétly, po) = (J, p)(Ko, po). Even if this last equality
holds, (0, 0) will fail to be in Sy, ,, if there are KIDs atKo, go).

Remark 5.7. We do not assumeQ, k) to be small.

Remark 5.8. Some rather general conditions which guarantee existence of smoothing
operatorg3.1)are given inAppendix B

Proof. We wish to apphLemma A.1with x = (§K, 8g) and

u = Du(0) = I/I CD s (Ko+Qo.g0+ho)’

v(x) = ¥ [(J, p)(Ko 4 Qo + 8K, go + ho + 8g) — (J, p)(Ko + Qo, go + ho)].
Dv(0) = ¥ % Pky+00.50-+ho-

3,k+3, 4.k+4,
E= A¢ 1//+(p oz( 0) X A¢,¢tﬂ a(gO),

2,k+2 2,k+2
F =y20(A5 - (g0) x AGo ) (g0),

1,k+1, 0,k,
G = A % (g0) x AgS,(20)-

We start by verifying that

Le:=v~ PKo+Qo go+ho‘/’ ®%P, s (Ko+Qo0,80th0)

is an isomorphism fronk to G. We wish to usé'heorem 2.2vith (Ko, go) there replaced
with (Ko + Qo, go + ho), and withk there equal zero; the needed regularity conditions on



P.T. Chrisciel, E. Delay / Journal of Geometry and Physics 51 (2004) 442—-472 457

Ric(go + ho) can be established by the calculationd.efnma 5.1using(5.2) (recall that
k > 2), while the condition orKg + Qg follows immediately from(5.2). The remaining
conditions are satisfied by hypothesis. Since there are no KIDs we concludegllaaé
Ly y (see(2 10) is an isomorphism from{¢ w(go + hg) x H4 w(go + ho) to H¢ w(go +
ho) x HO I//(go + ho); those spaces coincide with the ones basegbdly Lemmab5.1The
hypothe3|s of the existence of the smoothing opere(tﬂoh) with k there equal 0 implies
thatP} —._.¢ P inthe space of linear maps froH? y 109~ 1H X 2H oot
follows thatL, is an isomorphism fronf3  x H4 to Hl x HO for ¢ small enough.
SoL, is injective onE. The weighted elliptic reguiarity condition implies Holder regularity
of the solution, and surjectivity follows.

We leave it as an exercise to the reader to prove the following lemma usinga 4.2
together with the arguments remma 5.1

Lemma 5.9. Under the conditions ofheorem 5.2the map(5.4)is smooth from a neigh-
borhood of zero iny2pCl "> (g0) x Y2p2CyH 2 (g0) to Y2Cly 1 (g0) x Y2Cly (g0).

This does not suffice to prove differentiability of because of the topology involved,;
however, differentiability with respect to the Sobolev topology holds by hypothesis.

It follows that near(Qo, ho) the setSy, ,, is an embedded submanifold modeled on the
kernel of Pxo+ 0. s0-+h0-

Remark 5.10. The proof above actually gives a foliation of a neighborhood®4, /o)

inF = 1//2d>(A2 +2, o (g0) x Ai 'f;rzo‘(go)) Indeed, under the conditions ©heorem 5.2

we can useLemma A.2from Appendix Awith the same spaces as thosélreorem 5.2

and withL = u. For all (Qo, ho) € Sjy, 00, there is a neighborhood of zero inG =

Lk+1, Ok,
Aglyy " (80) x Ay’ (g0), such that

[(0.m) € v2onZhize(s0) x A5t (50,

(J, p)(Ko+ Q. go + h) = (Jo, po) + (8J, 8p), K€r P\ o oo ip = {O}}(MSp)ev

is a foliation. As we can do that for all point®o, 20) € Sy, 00, We Obtain a foliation of a
neighborhood 08y, ) in F.
2,k+2,a k2

In fact, if we denote byp the open subset aﬁzqu(p”]//’(p’ (go) x b (go) of elements
(Q, h) such that

Ker P}}O+Q’g0+h = {0},
then the map fronfy to G defined by

S, h) = (J, p)(Ko+ Q, g0+ h) — (J, p)(Ko, 80)
is a submersion. In particular the levels sets

{(Q,h) € Fo, f(Q,h)=(8J,0p)}s60)€G>
provide a foliation ofFj.

For completeness we note the following result.
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Corollary 5.11. Every non-empty connected componentSgf,, defined in(5.5) is a

Banach manifold modeled on the kerneRa, ; go. g 1o I Y2 (AZ424 5 AZHF2) for
an (arbitrarily chosen (Qo, ho) € Sjq, pq-

Proof. An embedded submanifold of a Hausdorff space is necessarily Hausdorff. The local
coordinate patches are provided by the maps which n®olelts tangent spaces constructed
in the proof ofTheorem 5.2It remains to show that all the kernels &(@, #)-independent.
The proof of Theorem 5.5hows that for allQ, h) € Sy, ,, there exists a neighborhood
thereof inSy, ,, which is arc-connected. It then follows that a connected component of
Sio.p0 1S in fact arc-connected, by observing that the set of metricSyjn,, which can

be connected to a fixed metric &y, ,, by a continuous curve containedd, ,, is open

and closed it ,,. Thus for two couple$Qo, o) € Syy,p, ANA(Q p, hp) € Sy, o, there
exists an ary in Sy, ,, from one to the other. For each point= (Q, i) € y, there exists
anr, > 0 such thatSy, ,, N Br(x, ry) is diffeomorphic to an open subset of the kernel of
Px+0,g+h)- ASy is compact, there exists a finite number of poins= (Q;, 1) € y,i =

0, ..., p} such that the union of thBr(x;, ry;)'s coversy. This provides a finite chain of
diffeomorphisms, a composition of which identifies the kernePgf o ¢+1y With that

of Pik+0,,g+h,)- U

6. Applications
6.1. Compact manifolds without boundary

In this section we apply¥heorem 5.20 the case wher#f is a compact manifold without
boundary. As already pointed out, in this case we take

p=v=9¢=1,
then the spaces we work with are the standard (non-weighted) Sobolev and Holder spaces.

Theorem 6.1.Letk > 2 anda € (0,1). Letgyo € CKt2« Ko e C¥t22 Then any
non-empty connected component of the set

Sioo=[(Q.1) € CH2x AT,
(J, p)(Ko + @, go+ ) = (Jo, po), Ker P . oo 1p = {0}}

is an embedded submanifold@ft2 x ck+2.,

In Theorem 6.1he kernel of the operatd?;‘;oJrQ go-h CAN be taken as that of an operator

from H1 x H? to HY x HO, or from C1 x C? to C° x CP, or from Ck+1e x Cck+2a g
cke x cke,

6.2. Asymptotically flat manifolds without boundary

In this section we applyfheorem 5.20 the case wherd/ is an asymptotically flat
manifold without boundary and with compact interior; by definition, this meana#tiathe
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union of a compact set with a finite number of regions, called ends, which are diffeomorphic
to R" \ B(0, R) for someR. We denote by some arbitrarily chosen metric @ +4
differentiability class which coincides with the Euclidean one in the asymptotically flat
regions. Here and in the following sections the indegorresponds to the differentiability

of the background, typicallys = oo will be appropriate, however in some situations it
might be useful to have a background with finite differentiability. The weight functions are
¢ = r, with ¢ andy—powers of- in the asymptotic regions, which are easily seen to satisfy
(4.1)—(4.4)in the asymptotic regions. We extend the functido a smooth strictly positive
function in the compact region, then the requirements on the weight functions are satisfied
globally. It is convenient to relabel tﬂ?é’r‘,a and theC** spaces as follows: choose some

nrs

meN, forke{0,...,m+4},«ae (0 1) ands € R we set

et ° Py k, ~
Ay = H];,rfn/Z—ﬂ (8, C;éa = Cryft_ﬁ 9.
For A € R we define
2.k,
Ai,a = Ar,r—g/z—x,r—x =30 C;’},a- (6.1)

We also define fok > 2:
M.« = {gisametric uniformly equivalenttﬁh
n / R B
g—8e IV (g =)l =007, 0=1<2) (6.2)
Fory > 0andk < m + 2 we let
—y 2,k+2, A —y 0
Af2a = Ar,rn/Z—g—y,,—y—m ¥ CCriza C Crrzar

This corresponds t¢y = /27277, ¢ = r~¥=2*" and sincep = r the condition(4.6)
holds precisely foy > 0. The choice of weights here is justified by Theorem 7.[1H].

With the labeling above, a metric such that 5 e Afﬁ’a with 8 < 0 clearly differs

from the Euclidean metric by @®). In order to see that this is actually @), fori € N
large set

I =TGi+1) =B0,i+1)\BQO,i.
Let f € #5N Cf and letx; e T'; be any point such that
[ f(xi)] = sup [ f(y)].

yel;
If Ifll.e =0 there is nothing to prove, otherwise et= (7/8)#~1, set
1
1 i =P
ri = min —,—'ﬂx)h I.
8" 2C| fll s
1
Fory € B(x;, r;) we have

) = x| = ( sup |Df|<z>> [y =il < CI Sl epifHy =il < _'f(;i)',

Z€B(xi,ri)
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which implies

2
2 —2B—n jn o S(xi) i n
/Bm,r,.)f(y)'y' dyzC(zl.ﬂ) (%)

The left-hand-side goes to zeroiggoes to infinity by the dominated convergence theorem,
which easily implies the result.

The reference metrigg will be taken to be such thaty € My42,. The referenc&k
can be taken to be zero, but aky € C‘ 20 with Ko = o(r—1) will do; this last condition
ensures that th.#-set condition ofl'heorem 5.holds, se¢12, Section 7Jor detalils.

We take the smoothing operation to be the ondjpendix B.1 the only thing which
needs to be checked is the uniform covering condif®.3): We write

n\ B oy i i+1
R"\ BO.R) = U @R, 2*'R).
=

Now I'(1,2) can be covered by a finite numbaf of ball's B(x;, |x;|/8) with x; €
I'(1,2). ThenT'(2'R, 21+1R) can be covered by balls B(2'Rx;, 273R|x;|) with 2'Rx; €
['(2'R, 2+1R). Itis then clear thaR” \ B(0, R) can be covered by a countable set of balls
B(yk, |yk|/8) with the property that for alt € N,

#{1, B(y, 31yi1) N B(yx, 31yk]) # ¥} < 3N,

as desired.

We note that the differentiability of the m#p.4) follows from the weighted equivalent
of the Schauder ring property &f* N L>°. All the remaining hypotheses @heorem 5.2
will be satisfied by[12] (compare Section 7 there) under the following conditions.

Theorem 6.2. Letm € N,k € {2.... . m},a € (0,1), g0 € Mi12.4, Ko € C}, , With

Ko=o("1).Letg > 0,8 ¢ {n— 2, n— 1}. Then any non-empty connected component of
the set of KID-free initial data

-1 —p
SJO»PO = [(Qv h) € Ak+20¢ X ‘Ak—O—Z,oz’

(J: (Ko + Q. g0+ 1) = (Jo, p0), Ker P,y oo = (01}
is an embedded submanifold@[fzfi X ‘Ak_fZ,a'

In the above the kernel of the operafq@OJrQ o+h is viewed as that of an operator from

AT BV 0 AP #87" Elliptic regularity implies that elements of this

kernel are classically differentiable KIDs such that o(r#+2—"), N = o(r#+t2"). Itis
known that for O< 8 < n— 2 there are no non-trivial such KIDs, so we obtain the following
corollary.

Corollary 6.3. Under the conditions ofheorem 6.2if 8 € (0, n — 2) then all the level
sets of the constraints map
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{(@.m e ACEL < A2 (o) (Ko + 0. g0+ ) = (Jo. po)

are embedded submamfolds[o;‘”rl x Akf:gza

Thus, within the above set of weights the set of solutions of the vacuum constraint
equations does not have any manifold singularities. On the other hand, such singularities will
occur at solutions with KIDs if higher values gfare used. The interest of such higigés
relies in the fact that the resulting manifolds of solutions possess fixed energy—momentum,
or angular momentum, or higher multipoles, depending upon the valge of

6.3. Compact manifold with boundary

In this section we applffheorem 5.20 the case wherg/ is a compact manifold with
smooth boundaryM. We wish to construct manifolds of initial data afwith prescribed
boundary values oM, as well as a prescribed number of transverse derivatives at the
boundary. Lety be any fixed auxiliary Riemannian metric 6+ () differentiability
class. Letx > 0 be a function that vanishes preciselyav, with dx nowhere vanishing
there. We start by considering power-law weighted spaces defined as

°)s ° 5 k, 2k, o _
Hli = HI;_,X—S—"/Z(V)’ Clsc,oz = x;:_“(y)’ Ai,ﬂf = Ax,xi*”/z,x* = HE n C;‘v“'
We also define fom +4 > k > 2:
Mo = [g metric uniformly equivalentto
78—y €Cl V(g =y =06, 0=I=2] (63)

(this differs from(6.2) by a different background metric and different functional spaces, we
hope that this ambiguity will not lead to confusions). bor 0 andm + 2 > k > 0 we set

g+2,0{ = Al;tci’faZJrn/Z xo—2+tn (V) - CZ+2,0[ C C](<)+2,a‘

The first inclusion shows that metrics of the fopn= y + 7 with h € A, , , approachy
atoM at least as O?), and in fact an argument similar to the oneSiection 6.5hows that
this is actually at least@”). The above correspondsgo= x, ¢ = x®H" =2 y = x0+1/2-2,
with the choices being justified as follows: [h2, Theorem 5.6fve obtain metrics such
thatdg is in Iflx‘xf(rwz)fn/z N C, ,-s-n+2). Itis convenient to number the spaces according
to the decay rate dfg near the boundary, so we set= s — n + 2. In the current set-up we
havedg in 1//2¢2(ISI¢,1,, N Cy,4), Which after straightforward algebra uniquely leads to the
weights above.

In order to obtain the required smoothing operator we use the resulispendix B.],
we need to justify the covering condition there. Tet 0, we set

o0
R} ={x=(@'... . ¥ eR" . x">0= ] BQT.2"D),
i=—00
whereB(2'T, 217 = {x = (x1, ... ,x") € R", 2T < x"* < 2+1T}. We haveyR”. =
{x € R", x" = 0}. B(1, 2) can be covered by closed cubes with edge sizes one, with
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pairwise intersections empty, or along the faces of the cubes. We choose one of those cubes,
call it K7, and we cover it by (n) balls B(x;, |x;|/8) with x; € K1; every other cube in

B(1, 2) will then be covered by (n) balls by translating the balls coverirg;. We cover

B(1/2, 1) with cubes of edge sizes 1/2, intersecting along the faces only, such that a cube
of B(1, 2) intersects precisely”2! cubes of3(1/2, 1). Each cube of3(1/2, 1) can be
covered byN(n) balls B(x;, |x;|/8) with x; in that cube by scaling by 1/2 and translating

the balls covering<;. An inductive repetition of the procedure leads to a covering’bf

by a countable set of balB(yx, |yx|/8) with the property that for alt,

#{1, B(y, 31yil) N B(yk, 31yk]) # ¥} < CuN(n)

for some constan€,. Working in local charts, and using partitions of unity, the above
construction provides the required covering near the boundary of a manifold.

We refer the reader tfi2, Section 5for a justification of the remaining hypotheses of
Theorem 5.2

Theorem 6.4. Letk € {2, ... .m},a € (0, 1), g0 € Mis2.4, Ko € Cijp , With

x| Kolgo + x%|V Kolgy =10 0.

For o > Owhenn > 3 or o > 0 any non-empty connected component of
Sto.p0 = {(Q, h) € AZ-i_-Zl,a X A1 200
(4, P)(Ko+ 0. g0+ h) = (Jo, p0). Ker Py g o1 = 0}

is an embedded submanifold@j{’;ia X AL 04

Here the kernel of the operatd?}‘;OJrQ’goJrh is, by elliptic regularity, a subspace of
(ﬁIa—n+2 x |2|2—o—n+2) N (Ck+2(M) x Ck+2(1\_/1)).
For further reference we note the following result.

Proposition 6.5. Suppose thatKo, go) € (Ck2% x C¥24y (M), k > 2, € (0, 1),
and letQ ¢ M be a domain with smooth boundary and compact closure. Fos aH
(n+1)/2, (n + 3)/2,the image of the linearization,Rt (Ko, go), of the constraints map

when defined 0nA; "5 x A$32)(Q), is

_ 1 g _
(x" 2YICogo) N (A1 X Ao
Here Ky is the space of KIDs which are IFI‘[” X I3|§_*” C (L2 x L2(Q, x 2 dpug,),
and orthogonality is taken i6l.? x L?)(2, x~ %" du,). In other wordsthe image of P is
[ 0) € Ay, x AL suChthat(J, o), (Y M)i2e12@. iy = O

forall (¥, N) € H{™ x H3™" satisfyingP* (¥, N) = 0} .

Further P~1(0) ¢ Ak‘fzr’la x A3 splits
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Proof. The proof of this resultis essentially contained in thakloéorem 6.4the restriction

on the constant there arises from the requirement that the full non-linear constraint map
be well defined, but this restriction is not needed for the linearized problem. We note that
a closed space complementi®g1(0) is provided by Im(®2y? P¥), for € small enough
(compare the argumentsAppendix A), and thatP restricted to this space is anisomorphism
onto Im(P). O

Alternative useful weights are the exponential ones, for those we wilPtggosition B.5
to obtain the needed regularization. We take the following weight functtons

¢ = X2, V= X" e—s/x’ ¢ = x2n e—s/x.

With those choices we note that
k+2, 2,2 4,52 k+2,

AXZ’xnaefs/x’XZH e—s/x C W ¢ (HKP,T// N C¢,(/7) =X (HXZ,X7” es/x N CXZ’ergc)'
We define the space

MIP = {g metric uniformly equivalent tg,

k _
g—7 el IV -yl =0u"?), 0=i=2].

Using the results in Section 5 fif2] one now has the following theorem.

Theorem 6.6. Letk € {2.... .m},a € (0.1), go € M\ . Ko € x~2C'F2¢, with

x2|K0|go + x4|VK0|go —,-00.

For s > 0 any non-empty connected component of

2 A 2,k+2,a k42,0
SJO,PO = {(Qv h) €EX AXZ,xfn es/x’er/x X AXZ,X" efx/x’XZn e—s/x?

(4. P)(Ko + Q. g0+ h) = (Jo. p0). Ker Py o = (01

. . 2,k+2,a k+2,a
is an embedded submanlfoldx?foz’x,n o/ st X AXZ,xn e x2n s/

; 21 92 .
Here the kernel of the operatm;"(oJrQ’goJrh is a subspace cﬁxz wesir X HS gy

but elliptic regularity shows that elements of the kernel are claésically differentiable in the
interior, and it is standard to show that they ar€iit2(M) x C*T2(M).

6.4. Conformally compactifiable manifolds

In this section we applyheorem 5.20 the case wher# is a conformally compactifiable
manifold (with a compact conformal boundary at infinity), as in Section[@2ff Lety be

1 Theorem 5.9 and Proposition 5.10[a2] providesg in y2¢2(Hy.y N Cpy) = x*(H,2 1 gix N Cy2 e5/0),
which leads to the choices of the weights above.
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¢4 conformally compactifiable, so that= x—27, with x—defining function for the
conformal boundar§M, andy—a Riemannian metric ol of C” 42 (M) differentiability
class. In that context, it is natural to define

Pi=H () = H().

Co=Cr (1) =Cp (),

s A2k+2,x s °rs
Ak,ot - Al,x*»‘,x*“(y) - Yk« n HZ’
and forr > 0,
t _ pk+2,a t 0
Ak+2,a - ‘Al,xt,xt(y) - Ck+2,a c Ck+2,oc‘

The spaceM; , is defined similarly tq6.3), but both the backgroung and the function
spaces involved are different now:

Mo = {g metric uniformly equivalent tg,
g-r el . IVl =0, 0=I=2}.

The same locally uniform covering as in the preceding section can be used here, so the
smoothing operator ohppendix B.lapplies, leading to

Theorem 6.7. Letk € {2,... ,m} anda € (0,1). Letgo € My, Ko = *ogo + Lo
with Lo, 2o € €9, 5 4 [Loly —2—0 0, [VLol, =10 0.Letsr > 0, ¢ {(n —3)/2, (n —
1)/2, (n + 1)/2}. Then any connected component of the set

So.po = {(Qv h) € A;<+2,a X A;<+2,a’
(4, p)(Ko+ Q. 80+ h) = (Jo. o), Ker P o gy = (0]

is a submanifold ofA} , , x Aj ,,. FOr 0 < ¢ < (n + 1)/2 the kernel condition is
automatically satisfied

Here the kernel oP . , , ., is that for a map from#{;" x ;" to Hy' x Hy'; this
can also be reformulated in terms of classical differentiability in appropriately weighted
spaces.

Remarks similar to those followinGorollary 6.3concerning the value afapply here.

Remark 6.8. For (Q, h) € Sy, o We have thatQ|, = o(1) and|VQ|, = o(D).
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Appendix A. Submanifolds, foliations

The following is a variation of an argument|ih7].

Lemma A.1l. Let E F and G be three Banach spaces, and I€tasp. y be a map defined
from a neighborhood dd in E (resp. F to F (resp. Q such that«(0) = 0 (resp.v(0) = 0)
and which is differentiable d@. We also assume thatif0) o Du(0) is an isomorphism from
E to G. Then the set"1(0) is a submanifold of F in a neighborhood ®f

Proof. Forx € F,
x = Du(0) o [Dv(0) o Du(0)]* o Dv(0)(x)
€ Im Du(0)

+ x — Du(0) o [Dv(0) o DU(0)]~* o Dv(0)(x) .
€ KerDv(0)

(It easily follows thatF' = Im Du(0) @ Ker Dv(0), with both summands closed.) As(0) o
Du(0) is anisomorphism, the inverse function theorem showsithats a diffeomorphism
in a neighborhood of 0, so fare F close to zero we have

x:uo[vou]*lov(x) —i—x—uo[vou]*lov(x).

elmu

Let us define a map from a neighborhood of zer@'ito F by

f(x) =x4uovoul"ov(x) — Du(0) o [Dv(0) o Du(0)]~* o Dv(0)(x).
One clearly has

Df(0) = Id,

and the inverse function theorem shows tlfids a diffeomorphism in a neighborhood of
zero. We also have

x e v H0) & f(x) € KerDv(0)

(for the “<” part we use the fact th@v(0) o u o [v o u]~1 is an isomorphism near zero),
so f provides the required map modeling!(0) on a linear space. |

Lemma A.1shows how to straighten-up a level sebpbne can similarly show existence
of foliations by level sets.

Lemma A.2. Let E F and G three Banach spagdsa linear continuous map from E to F
v a map defined from a neighborhood of a poiptin F to G, continuously differentiable
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near xg. We assume thatxg) o L is an isomorphism from F to G. Then there exists a
neighborhood V ofp = v(xg) in G such that the collection of level setsupf

{x € Fv(x) = y}yev,

is a foliation of a neighborhood U ofy in F.

Proof. We have thaDuv(x) o L is a diffeomorphism fox € F close toxg, one then has as
in Lemma A.1that

F =1ImL @ KerDuv(x),

and one easily checks that Iinis closed (recall that all maps are continuous)CBax) is
surjective and its kernel splits. Frof@5, p. 21]the mapv is then a submersion negg. In
particular, again fronfi25, p. 20] there existU neighborhood ofg in F, V neighborhood
of yo in G and two isomorphismg : U — Uj; x Uz (U1 andU2 open subset of some
Banach spaces) antd: V — V> (V> open subset of some Banach spaces Wwithc V>)
such that

1//ovo(p_lZU1XU2—> Vo

is the projection on the second axis. This gives the desired foliatidh of O

Appendix B. Two weighted smoothing operators

In this appendix we will show how to define smoothing operators as needed in the body
of the paper; this will require a set of conditions on the functigpasde, compatible with
the usual settings of interest in general relativity. The technigusppiendix B.2seems
to be somewhat simpler than that Appendix B.1 and does not require any covering
conditions. However, covering conditions arise naturally when regularizing functions in
weighted Sobolev classes, therefore it seemed of interest to us to present both methods.

B.1. Smoothing with locally uniformly finite coverings

Throughout this appendix we assume that the manifdlds an open subset d&",
equipped with an Euclidean metric (which is of course not the physical space metric we are
interested in), and we will be regularizing functions. The regularization can then be applied
to tensor fields on more general manifolds by using coordinate patches, partitions of unity,
and usual covering arguments.

We assume that andg verify (4.1)—(4.3) For all p € M, we denote byB,,, the open
ball of centerp with radiuse(p)/2. We require that for all p € M,

B(p, ¢(p)) C M. (B.1)

12 Eq. (B.1)can be replaced by the weaker condition that there epists 0 such that for alp € M we have
B(p, u¢(p)) C M, as changingp to u¢ for a positive constant leads to equivalent norms. So, e.g. in the
asymptotically flat case, one actually has to replace the weight for » > R by ¢ = r/2R. Any such rescaling
leads to obvious changes in the hypotheses needed for the covering arguments below.
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For p € [1, oco) we shall use the following notation:
B’ =B (Pi, M) .
PO

Our next restriction is that the manifold can be covered by a countable collection of balls
B8
1 L

M= B (B.2)

such that there exists @n € N so that for alli € N,

#{j. BZ N B3 # 0} < N. (B.3)
Forp € M, we set

@p : B, %) >z p+¢(p)z € By
This implies that for all functions on M and all multi-indices’ we have

A wowpp) =¢(P"@w) 0 gp.

Using(4.2) and (4.3)t is easy to see that we have the following lemma.

Lemma B.1. For p € [2, 8] the following norms orC’;;f’;(M) are equivalent

lull e oy ~ SUP Ul ke oy ~ SUP [|u]] ke py ~ SUP|[lu 0 @p || ke :
CooM) ieN Co.p(BD) ieN C¢(p,-).w(p,-)(Bi) ieN b Clww(m(B(O’l/p))

We now construct a convenient partition of unity.

Lemma B.2. There exists a partition of unity

Zé“i =1
i=1

with smooth functiong; > 0,and¢; > 0 outsideBl‘.‘, such thatforall € Nanda € (0, 1)
there exists a constaut(/, @) so that for alli € N,

1ill ¢t gy = €L ).

Proof. Let x be a smooth non-negative function Bf such thaty = 1 on B(0, 1/8) and
x = 0 outsideB(0, 1/4). We define

Xi
Z?il Xj

Let us show that the sum in the definition above is well defined and greater than 1. If
x € B, there exists at mos¥ balls B}, with N given by(B.3), such that € B}. Sincey;

Xi=xop,t =
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has support irB;‘, the sum ak is over afinite set. If B? theny;(x) = 1 thus the sumis

not less than 1. If € Bf \ BY, from (B.2), » must be in somé? thus;(x) = 1 and then,
again, the sum is greater than or equal to 1.
Now, x; has compact support so isdfi;fxl(M), and fromLemma B.1

. — . / . —_ —_
”Xl”c(lpv“l(m - ”Xl”cfbal(Bfl) S C ”Xl o gap"”Céﬁ(B(O,l/@) - C ”X”Céﬁ(B(o,l/@) - C]_,

whereC; depends upohanda but does not depend upenSo we have that

o0
i < i N3 <NC,
Lo = 2 Wilagun =N
J= qul(Biz) (). By NB5#0}
and thus
o0
ZX,‘ < NGC;.
j=1

Cé;f"l(M)

Finally, as the sum is greater than or equal to 1 it is easy to see thafsteatisfy the
desired properties. O

Let 6 by any smooth strictly positive function d®", with support inB(0, 1) and such
that

[o=1

Fore > 0 we set

6. (x) = Sine (f)

&

Foru a function onM ands > 0, we define

uj = giu, Ui =uj o @p,,
o
ﬁi,a = 6 * i, Uje = ﬁi,s o ‘P;,vl» Ug = Z Uje
i=1
Proposition B.3. Letu € Cg”‘fp(M). Forall e € (0,1/4) and allm € N we haveu, <
C(/’jf(p(A/[). Further, u. converges to u irC’(;;,‘f‘p(m ase goes to zero

Proof. First remark that as the’s have support irBf‘, then fore < 1/4 the functionst; .
have support irB2. It follows that onB? we have

Ug = E Mj,e-

(. BENBG0)
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Lemmas B.1 and B.®bgether with standard properties of convolutiorRihimply

||u€||c(/;‘0;(3i2) = Z ”Mj’EHCI;’z(Biz) = Z ”uj’SHC;"O;(BiZﬁB?)
1, BEN B30} 1, BEN B30}
< D0 ujellpragey C Y el
FENCy (B ERCG i) (BO1/2)
1, BEN B30} {J, BENB330}

=C Z ||u]||C¢(p D.op (BO.1/2)
[ BENBS#0)

=C D0 Mgl ey = NC'CU llull s o
(. B2B22#) !

In particularu, € C""" (M), with norm uniformly bounded im. Let us now show that in
factu, is also |nC"+l(M) for any! > 0. First, we have

sup|¢¢k+lak+luls|<Csup|so(pl>¢k+’<pl>ak+l el =C sup |o(p)d* i
B2 B? B(0,1/2)

i i

< C13'0c ]l L1(p0.1/2)) 19 (P) 8 i | Lo (B0.1/2))
1 R
=C5 1801 1y ll9(pi) 3 il Lo (B(0,1/2))
C C
/ kak. . U}
<C g”(ﬂ(b d ul”LOC(BiZ) <C ol ||u||C1(;¢(M)
Thus we have

k+1 ak+1 k+1 ak+1
sup lpg' 10" | = > sup |pg" 19 u e < NC” l||u||ck Sy
Bj U BszZ;ﬁM} B ﬁB

and then, usingemma B.1

sup|¢>¢k+lak+lu | <NC” ,||u||ck S

which givesu, € C"”(M) foranyl > 0.
Let us pass now to the proof that converges ta in C (1\/0 We have

uie — uill ke p2y < Clliti e — il ok
be — Willcke (p2) ie Che ) (BO.1/2)
<
C'e%|a; ”C’izp (BO.1/2)) = < ("¢ ||M||Cka -
Thus ase —u = Y 02, (u; . — u;), 0N B?, we have
”ué‘ - MHCQ,Z)(B:'Z) S Z ”uj,é‘ - u]”c:;:‘z‘p(BlzﬂBf) =< NC & ”u”CkO‘(BZ)v

1, BEN B30}
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then finally

_ < o
”uS u”Cgafp(M) = NC/S ”u”C:;aw(m

B.2. Smoothing using a weighted convolution

For the exponential weights considerediection 6.3he uniform covering condition of
the previous section seems to be awkward to verify directly, if true. Itis therefore convenient
to proceed differently. In what follows we will assume théts an open domain iR”, this
can again be gotten rid of by using partitions of unity and passing to local charts. As in the
preceding section, we assume thatndy satisfy(4.1)—(4.3)and that(B.1) holds.

Lemma B.4. The following norms on?(’;"’;(M) are equivalent

lull ka ypy ~ SUP lutll ey ~ SUP [l2t]] ok .
CooM oy Coo B ey Comrom (B

Foru € C(’;:‘" (M) and fore € (0, 1/2), we define the smooth function o (heref is as
in the preceding section):

ﬁ(x)—/ 1 9<x_y>u()d”
T et \epw )Y

/ ! e(x_y> (y) d" / 02 (x—ep(x)z) A"
= u = )u(xX— Z Z.
yeBxep(x) &P \ e (x) YEY 2€B(0,1)

Proposition B.5. Letu € Cé’_y‘é(M). Forall ¢ € (0,1/2) and allm € N we haveii, €
C%(M). Further, iz, converges to u irti?fl‘;";(m ase goes to zero

Proof. We first show thati, Cg"‘fp(M) with norm bounded independently af We have

o) < sup  le@u| < Cllul cha s
yeB" (x,e¢(x)) ¢.0

where the last inequality comes frd,emma B.4 For the first derivatives, we have
e (x) = / 02)3u(x — eg()2)(6] — erp()eh) d'z.
zeB"*(0,1)

So fromEg. (2.5)andLemma B.4we have

lo()p(D)diite(x)] <€ sup |e(0)¢)duy)| = C'llull pta 4y -
YEB" (x,£4(x)) ¢

It should be clear that similar inequalities are true forktiederivatives and for the Holder
quotients, leading to

liell pha gy < Cllull ha yp,-
¢ C¢.w(M) C¢~¢(M)
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We leave it as an exercise to the reader to show in a manner similar to that in the preceding
section thafi, is in fact in C(’;f;f(M) forall € N.
Writing

e (¥) — u(x) = / ) x — ep()2) — u(0]d"z,

zeB"(0,1)
one similarly shows that

e — ull ko, p < Cllull ke 8%,
ke ke

so thatii, converges ta in C;‘,’,‘j‘p(m whene goes to zero, as required. O
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