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Abstract
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1. Introduction

A natural question that arises in general relativity is whether some sets of solutions of
the, say vacuum, constraint equations carry a manifold structure. For example, it is useful to
have a Banach manifold structure on the set of asymptotically flat solutions of the constraint
equations when trying to minimize the ADM mass[7,8,10]. Appropriate manifold structures
allow one to use tools such as the Smale–Sard theorem, or the Baire category theorem, when
discussing genericity of some properties of solutions of the Einstein equations. The existence
of aFréchetmanifold structure2 for (a subset of) the set of solutions of the vacuum constraint
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URL: http://www.phys.univ-tours.frpiotr.
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equations on a compact manifold is a consequence of linearization stability studies of
Fischer, Marsden and Moncrief (see[20,21]and references therein, compareTheorem 4.6).
The results there have also been studied in the context of asymptotically flat initial data sets
on a manifold with compact interior in[1].

While the above results might be satisfactory for several purposes, they donot lead to a
Banachmanifold of solutions. In finite dimension there is no need to introduce a distinction
between Banach, or Hilbert, or Fréchet manifold structure; however, the differences are
significant in infinite dimension, because some facts which are true in Hilbert spaces are
not necessarily true in all Banach spaces. Similarly some properties of Banach spaces do
not carry over to Fréchet spaces. (The reader is referred to[18,24,25,29]for analysis on
infinite dimensional manifolds.)

In the asymptotically flat case an alternative method has been developed by R. Bartnik3 for
constructing a Hilbert manifold structure on the space of solutions of the vacuum constraints,
essentially based on the conformal method. It uses a (weighted)Hk×Hk+1 topology,k ≥ 1,
on the space of(K, g)’s, and it is clear that the method generalizes to certain other settings
of interest. Such spaces are well adapted to the evolution problem, at least fork large
enough. However, in that method one does not have the flexibility in controlling boundary
or asymptotic behavior which is provided by the Corvino–Schoen[12,15] version of the
Fischer–Marsden–Moncrief approach.

The purpose of this note is to show that aBanachmanifold structure can be obtained by
a variation of the Fischer–Marsden–Moncrief-Corvino–Schoen method. It turns out that a
direct application of the standard a priori estimates[28] for the construction below does not
seem to lead to a manifold structure based on Sobolev spaces, which would have been more
natural for the evolution problem, and which would have led to aHilbert manifold structure.
Instead, e.g. on compact manifolds without boundary, we obtain a manifold modeled on
(a subset of) the spaceCk,α × Ck,α, k ≥ 4, α ∈ (0,1) of symmetric tensors. This appears
somewhat surprising at first sight, as a natural set-up for the evolution problem (regardless
of the Sobolev versus Hölder space issue) might seem to be one where the differentiability
of the extrinsic curvature tensorK is one order less than that of the metricg. On the other
hand, sinceK’s can be thought of as variations ofg’s, from a manifold structure point
of view it seems natural that theK’s live in a space with the same differentiability asg.
Whatever the natural space is, theCk,α×Ck,α topology or weighted versions thereof are the
ones which are obtained by the method here; this is a rather unexpected consequence of our
analysis in this paper. As already pointed out, and as made clear in the applications below,
the manifolds of initial data obtained here exhibit more structure than what is obtained by
the conformal method and its variations.

In our construction of the manifold structure we use a smoothing device to recover the
loss of regularity inherent to the Fischer–Marsden–Moncrief approach. This allows us to
work consistently in spaces with finite differentiability, leading to the Banach manifold
structure described above. We use a general approach of weighted spaces as in[12], which
allows a simultaneous treatment of the compact case with or without boundary, and of

3 R. Bartnik, in preparation; some similar ideas have also been considered by L. Andersson (private communi-
cation).
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the asymptotically flat case, and of the conformally compactifiable case, with families of
different topologies.

All the results presented below remain valid in thetime-symmetricsetting,K = 0. This
implies that all the manifold structures presented here have their obvious counterparts for
the set of Riemannian metrics with prescribed scalar curvature.

This paper is organized as follows: InSection 2we review the framework of[12], and we
show how the results there can be used to define a local Hilbert manifold of solutions near
a given solution; the resulting manifolds can not be patched together in general because
of insufficient regularity of the operators involved. InSection 3we present our basic reg-
ularization procedure, which turns out to still be insufficient to provide a (global) Hilbert
manifold structure. InSection 4we therefore pass to an analysis in weighted Hölder spaces.
We prove there that (the KID-free part of) the level sets of the constraints map are, globally,
embedded submanifolds in a Banach space, seeTheorem 5.2, under very general conditions
on the weights; this is the main result of the paper. In fact, we prove that the level sets of
the constraint map foliate (in a sense made precise inRemark 5.10) the KID-free part of the
space of all(K, g)’s. In Section 6we show that the hypotheses made inTheorem 5.2are ful-
filled on compact manifolds with or without boundary, or on asymptotically compactifiable
manifolds, or on asymptotically flat manifolds. InAppendix Awe prove a lemma which
provides a submanifold structure in Banach spaces under rather general conditions, as well
as a foliation result. InAppendix Bwe present two regularization procedures in weighted
spaces, as needed in applications of the submanifoldTheorem 5.2. For the convenience of
the reader those results from[12] which play a key role in the current construction have been
presented in detail, including some introductory comments borrowed from[12] whenever
useful for the clarity of the argument.

2. The construction

Let

(K, g) := (J(K, g), ρ(K, g))
be the general relativisticconstraints map:(

J

ρ

)
(K, g) :=

(
2(−∇jKij + ∇i trK)

R(g)− |K|2 + (trK)2 − 2�

)
, (2.1)

where� is the cosmological constant. (The functionc4ρ/16πG is the energy density of the
matter fields, whilec4J/16πG is the energy–momentum flux vector.) The general relativistic
constraint equations are(K, g) = 0, whatever the space-dimensionn. As those equations
are trivial in space-dimension 0 and 1, in the remainder of this work we shall assume that
n ≥ 2.

Let h = δg andQ = δK, the linearizationP(K,g) of the constraints map at(K, g) reads

P(K,g)(Q, h)

=
(

−Kpq∇ihpq +Kqi(2∇jhqj − ∇qhll)− 2∇jQij + 2∇i trQ− 2(∇iKpq − ∇qKpi)hpq

−�(tr h)+ div div h− 〈h,Ric(g)〉 + 2KplKqlhpq − 2〈K,Q〉 + 2 trK(−〈h,K〉 + trQ)

)
.

(2.2)
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Recall that a KID is defined as a solution(N, Y) of the set of equationsP∗
(K,g)(Y,N) = 0,

whereP∗
(K,g) is the formal adjoint ofP(K,g):

P∗
(K,g)(Y,N) =




2(∇(iYj) − ∇ lYlgij −KijN + tr KNgij )

∇ lYlKij − 2Kl(i∇j)Yl +Kql∇qY lgij

−�Ngij + ∇i∇jN + (∇pKlpgij − ∇lKij )Y
l

−N Ric(g)ij + 2NKliKjl − 2N(trK)Kij


 . (2.3)

We shall denote by ( ) the set of KIDs defined on an open set . In vacuum space–times
( , g) KIDs on a spacelike hypersurface are in one-to-one correspondence with Killing
vectors ofg [27] on the domain of dependence of . A similar statement holds in electro-
vacuum for appropriately invariant initial data for the electromagnetic field, the reader is
referred to[9] for some comments about general matter fields.

Following[12], we will be using weighted function spaces defined as follows. Letφ and
ψ be two smooth strictly positive functions4 onM. Fork ∈ N letHkφ,ψ(g) be the space of

Hkloc functions or tensor fields such that the norm5

‖u‖Hkφ,ψ(g) :=
(∫

M

(
k∑
i=0

φ2i|∇(i)u|2g
)
ψ2 dµg

)1/2

(2.4)

is finite, where∇(i) stands for the tensor∇ · · · ∇︸ ︷︷ ︸i times
, with ∇—the Levi-Civita covariant

derivative ofg; we assume throughout that the metric is at leastW
1,∞
loc ; higher differentia-

bility will be usually indicated whenever needed. Fork ∈ N we denote byH̊kφ,ψ the closure

inHkφ,ψ of the space ofHk functions or tensors which are compactly (up to a negligible set)

supported inM, with the norm induced fromHkφ,ψ. TheH̊kφ,ψ ’s are Hilbert spaces with the
obvious scalar product associated to the norm(2.4). We will also use the following notation

H̊k := H̊k1,1, L2
ψ := H̊0

1,ψ = H0
1,ψ,

so thatL2 ≡ H̊0 := H̊0
1,1. We set

W
k,∞
φ := {u ∈ Wk,∞

loc such thatφi|∇(i)u|g ∈ L∞}

with the obvious norm, and with∇(i)u—the distributional derivatives ofu.
Forφ andϕ—smooth strictly positive functions onM, and fork ∈ N andα ∈ [0,1], we

defineCk,αφ,ϕ the space ofCk,α functions or tensor fields for which the norm

4 We use the analysts’ convention that a manifoldM is always open; thus a manifoldM with non-empty
boundary∂M does not contain its boundary; instead,M̄ := M∪∂M is a manifold with boundary in the differential
geometric sense. Unless explicitly specified otherwisenoconditions onM are made—e.g. that∂M, if non-empty,
is compact—except thatM is a smooth manifold; similarly no conditions, e.g. on completeness of(M, g), or on
its radius of injectivity, are made.

5 The reader is referred to[4,5,23]for a discussion of Sobolev spaces on Riemannian manifolds.
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‖u‖
C
k,α
φ,ϕ(g)

= sup
x∈M

k∑
i=0

(
‖ϕφi∇(i)u(x)‖g

+ sup
0�=dg(x,y)≤φ(x)/2

ϕ(x)φi+α(x)
‖∇(i)u(x)− ∇(i)u(y)‖g

dαg (x, y)

)

is finite.
We will only consider weight functions with the property that there exists- ∈ N ∪ {∞}

such that6 for 0 ≤ i < - we have

|φi−1∇(i)φ|g ≤ Ci, |φiψ−1∇(i)ψ|g ≤ Ci, |φiϕ−1∇(i)ϕ|g ≤ Ci (2.5)

for some constantsCi. The following situations seem to be of main interest:

• If M is compact without boundary we will useφ = ψ = ϕ = 1.
• If ∂M is compact, smooth, and non-empty, we will use forφ = x a function which is a

defining function for the boundary, at least in a neighborhood of the boundary; that is,
any smooth non-negative function on̄M such that∂M is precisely the zero-level set of
x, with dx without zeros on∂M. Thenψ andϕ will be a power ofx on a neighborhood
of ∂M. Condition(2.5)will hold for metrics which are smooth up-to-boundary near∂M.

• If M contains an asymptotically flat region,φwill behave asr, whileϕ andψ will behave
as a power ofr in the asymptotically flat region;(2.5) will hold for a large class of
asymptotically flat metrics.

• If M contains a conformally compactifiable region, then in a neighborhood of the con-
formal boundaryφ will be taken to be 1, whileψ will be a power of the defining function
of the conformal boundary.

• Exponentially weighted versions of the above will also be considered.

In all those situations one can obtain elliptic estimates in weighted spaces for the equations
considered here by covering and scaling arguments together with the standard interior
elliptic estimates on compact sets (cf., e.g.[2,3,6,11,22,26]). We will refer to this asthe
scaling property. More precisely, we shall say thatthe scaling propertyholds (with respect
to some weighted Sobolev spaces with weight functionsψ andφ, and/or weighted Hölder
spaces with weight functionsϕ andφ, whichever ones are being used will always be obvious
from the context) if there exists a covering ofM by a family of sets α, for α in some index
setI, together with scaling transformationsφα :  α →  ̂α on each of the sets α, such that
the transformed fields(K̂α, ĝα) on α are in7 inW3,∞( ̂α)×W4,∞( ̂α), and such that the
usual interior elliptic estimates on thê α’s can be pieced together to a weighted estimate,
such as(4.7), for the original fields. Some sufficient conditions for the scaling property are
discussed in[12, Appendix B]. We note that the scaling transformation of the fields on ̂α,
(K, g)→ (K̂α, ĝα), will typically consist of a pull-back of the fields, accompanied perhaps

6 Conditions(2.5) will typically impose- restrictions on the behavior of the metric and its derivatives in the
asymptotic regions; it is therefore essential to allow- <∞ if one does not wish to impose an infinite number of
such conditions.

7 It is conceivable that in some situations less a priori regularity on the(K̂α, ĝα)’s can be assumed, but this
is the setup which seems to play the most important role in our paper; the reader should be able to adapt the
differentiability conditions to his needs if required.
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by a constant conformal rescaling. The “scaling property” is a condition both on the metric
g, the extrinsic curvature tensorK, and on the weight functions involved: indeed, both
the metric coefficients, the connection coefficients, as well as their derivatives, etc., which
appear in our equations must have appropriate behavior under the above transformations so
that the required estimates can be established.

Conditions(2.5)guarantee the following lemma.

Lemma 2.1. Letk ∈ Z, k ≥ −2. Suppose that8 g ∈ Wk+3,∞
loc and that

Ric(g) ∈ φ−2W
k+2,∞
φ (g), (2.6)

K ∈ φ−1W
k+3,∞
φ (g). (2.7)

If (2.5)holds with0 ≤ i ≤ k + 2, then the linear operators

P∗
(K,g) : H̊k+3

φ,ψ (g)× H̊k+4
φ,ψ (g)→ φ−1H̊k+2

φ,ψ (g)× φ−2H̊k+2
φ,ψ (g), k ≥ −2, (2.8)

P(K,g) : ψ2(φH̊k+2
φ,ψ (g)× φ2H̊k+2

φ,ψ (g))→ ψ2(H̊k+1
φ,ψ (g)× H̊kφ,ψ(g)), k ≥ 0, (2.9)

are well defined, and bounded.

The following operator is of interest in our context,

Lφ,ψ := ψ−2P(K,g)1ψ
21P∗

(K,g), (2.10)

where1 is defined by

1(x, y) := (φx, φ2y). (2.11)

A useful inequality to make things work is the following:

C‖1P∗
(K0,g0)

(Y,N)‖L2
ψ(g0)

≥ ‖Y‖L2
ψ(g0)

+ ‖N‖
H̊1
φ,ψ(g0)

. (2.12)

LetK0 be kernel of

1P∗
(K0,g0)

: H̊1
φ,ψ(g0)× H̊2

φ,ψ(g0)→ L2
ψ(g0)× L2

ψ(g0),

and letK
⊥g0
0 be itsL2

ψ(g0) ⊕ L2
ψ(g0)-orthogonal. We denote byπ

K
⊥g
0

theL2
ψ(g) projec-

tion ontoK
⊥g
0 . The following result, proved9 in [12], is a weighted equivalent of those in

[13,14,16](compare[15]):

8 The local differentiability conditions follow from the requirement that thek+ fourth covariant derivatives of
N and thek+ third ones ofY can be defined in a distributional sense; both of those conditions are fulfilled by a
metricg ∈ Wk+3,∞

loc —the reader should note that the first covariant derivatives ofN do not involve the Christoffel
symbols ofg sinceN is a function.

9 Actually in [12] the hypothesis is made that the cosmological constant� vanishes, which is not assumed here
(compare(2.1)). The inclusion of a cosmological constant does not require any modifications of the proofs there,
insofar as the results discussed here are concerned.
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Theorem 2.2([12, Theorem 3.6]). Letk ≥ 0,g0 ∈ Wk+4,∞
loc , suppose that(2.5)holds with

0 ≤ i ≤ 4+ k, that

Ric(g0) ∈ φ−2W
k+2,∞
φ (g0), K0 ∈ φ−1W

k+3,∞
φ (g0),

and that the weightsφ andψ have thescaling property.If there exists a compact set ⊂
M such that for allH̊1

φ,ψ(g0) vector fields Y and̊H2
φ,ψ(g0) functions N, both supported in

M\ , the inequality(2.12)holds, then for all(K, g) close to(K0, g0) inφ−1W
k+3,∞
φ (g0)×

W
k+4,∞
φ (g0) norm, the map

π
K
⊥g
0
Lφ,ψ : K

⊥g
0 ∩ (H̊k+3

φ,ψ (g)× H̊k+4
φ,ψ (g))→ K

⊥g
0 ∩ (H̊k+1

φ,ψ (g)× H̊kφ,ψ(g))
is an isomorphism such that the norm of its inverse is bounded independently of(K, g).

We will see how to use this result, and certain variations thereof, to obtain a manifold
structure on various sets of solutions of the vacuum constraint equations. More generally,
one obtains a manifold structure on the set of initial data with(J, ρ)-fixed. Recall that a
Banach manifoldis a Hausdorff topological spaceM such that for everyp ∈ M there exists
a neighborhood ⊂ M of p equipped with a homeomorphismφp from to an open
subset of some Banach spaceBp. The couple( , φp), and sometimes simply the set,
will be called acoordinate patch. On overlapping coordinate patchesand the maps
φp ◦φ−1

q are supposed to be smooth diffeomorphisms from their domainsφq( ∩ ) ⊂ Bq
to their imagesφp( ∩ ) ⊂ Bp. One can similarly define the notion of aHilbert manifold,
and of aFréchetmanifold.

A connected embedded submanifold of an open subset of a Banach space is always a
manifold modeled on any of its tangent spaces (which are all necessarily diffeomorphic,
compareCorollary 5.11). We will actually prove that the level sets of the constraint map form
embedded submanifolds in such a space, which will provide the desired manifold structure.

We start with the following observation.

Proposition 2.3 (Local Hilbert manifold (and submanifold)).Under the hypotheses of
Theorem 2.2, suppose that there are no KIDs:

H̊k+3
φ,ψ (g0)× H̊k+4

φ,ψ (g0) ⊃ K0 = {0}. (2.13)

Assume that the map

ψ2(φH̊k+2
φ,ψ (g0)× φ2H̊k+2

φ,ψ (g0))→ H̊k+1
φ,ψ ((g0))× H̊kφ,ψ((g0)),

(δK, δg)  → ψ−2

{(
J

ρ

)
[(K0, g0)+ (δK, δg)] −

(
J

ρ

)
(K0, g0)

}
(2.14)

is differentiable at zero. Then the set

S0 =
{
(Q, h) ∈ ψ2(φH̊k+2

φ,ψ (g0)φ
2H̊k+2

φ,ψ (g0)),

(J, ρ)(K0 +Q, g0 + h)− (J, ρ)(K0, g0) = 0
}

(2.15)

is an embedded submanifold ofψ2(φH̊k+2
φ,ψ (g0)× φ2H̊k+2

φ,ψ (g0)) in a neighborhood of zero.
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Proof. A rather general justification is provided byLemma A.1, Appendix A, by setting
u = Du(0) = ψ212P∗

(K0,g0)
, v = ψ−2[(J, ρ)(K0 + ·, g0 + ·) − (J, ρ)(K0, g0)], Dv(0) =

ψ−2P(K0,g0), E = H̊k+3
φ,ψ (g0) × H̊k+4

φ,ψ (g0), F = ψ21(H̊k+2
φ,ψ (g0) × H̊k+2

φ,ψ (g0)), andG =
H̊k+1
φ,ψ (g0)×H̊kφ,ψ(g0). The linear mapu is continuous byLemma 2.1, hence differentiable,

whilev is differentiable by hypothesis. The required isomorphism property forDv(0)◦Du(0)
follows fromTheorem 2.2. �

Example 2.4. To motivate and illustrate the results so far, consider the case of a com-
pact manifoldM without boundary; other examples of interest will be treated in detail in
Section 6. We chooseφ = ψ ≡ 1, so the spaces involved are standard Sobolev spaces. As
M is compact we can take = M so that condition(2.12)is trivially satisfied. The smooth-
ness hypotheses on the map(3.2) are satisfied by standard calculus in Sobolev spaces. If
(K0, g0) is aCk+4×Ck+3 initial data set without KIDs,Proposition 2.3provides a manifold
of Hk+2 ×Hk+2 solutions of the constraint equations passing through(K0, g0).

Example 2.4clearly exhibits an unfortunate differentiability mismatch, which leads to an
essential obstruction when trying to glue together the coordinate patches obtained so far, and
which therefore prevents one from obtaining a Hilbert manifold structure on the set of all
solutions of the constraints equations using the method above. InSection 5we will show that
a (different) manifold structure can nevertheless be obtained using the following approach:
consider a data set(K1, g1)without KIDs in an appropriate Hölder differentiability class, let
(δK1, δg1) be a solution of the constraints with the same differentiability class, and suppose
that you can smooth out(K1 + δK1, g1 + δg1) to asmoothset(K, g), in a way consistent
with the set-up ofTheorem 3.1. If one can solve the equation(

J

ρ

)
((K0 + δK, g0 + δg)+ ψ212P∗

(K,g)(Y,N))

−
(
J

ρ

)
(K0 + δK, g0 + δg) =

(
δJ

δρ

)
, (2.16)

then one has a better chance of ending in a space with the original differentiability.

3. A regularized problem

The aim of this section is to implement the above in weighted Sobolev spaces. Consider
again a compact manifold without boundary, let(K, g) be ofCk+2,α × Ck+2,α differen-
tiability class, and first regularize(K, g) by the usual convolution method to obtain a new
smooth couple(Kε, gε), then define

P∗
ε := P∗

(Kε,gε)
.

Roughly speaking, the equation we will attempt to solve will be(2.16)with P∗
(K,g) there

replaced byP∗
ε . The idea is to solve that equation for(Y,N) ∈ C3,α × C4,α, and then
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use elliptic regularity to get to(Y,N) ∈ Ck+3,α × Ck+4,α, obtaining the desired extrinsic
curvature and metric inCk+2,α × Ck+2,α; we emphasize that one wouldnot get that last
differentiability without the regularization. Somewhat more generally, let 0≤ k0 ≤ k − 2,
still in the compact boundaryless case one has the following convergence property, for
k ≥ 2:

P∗
ε → P∗ in L(H̊

k0+3
φ,ψ (g0)× H̊k0+4

φ,ψ (g0), φ
−1H̊

k0+2
φ,ψ (g0)× φ−2H̊

k0+2
φ,ψ (g0)),

which is precisely what is needed to make the arguments work. In general we will therefore
assume that we have a smoothing operation(K, g)→ (Kε, gε) such that

(Kε, gε)→ε→0 (K, g) in φ−1W
k0+3,∞
φ (g0)×Wk0+4,∞

φ (g0). (3.1)

(In Appendix Bwe give conditions on the weight functions which guarantee that the smooth-
ing operation with the above properties exists.) This leads to the following variation of
Theorem 3.9 of[12].

Theorem 3.1. Letk ≥ 0, g0 ∈ Wk+4,∞
loc , assume that(3.1)holds withk0 = k and suppose

that (2.5)holds with0 ≤ i ≤ 4+ k. Assume moreover that

Ric(g0) ∈ φ−2W
k+2,∞
φ (g0), K0 ∈ φ−1W

k+3,∞
φ (g0),

and that the weightsφ andψ have thescaling property.Suppose further that there exists a
compact set ⊂ M such that for allH̊1

φ,ψ(g0) vector fields Y and̊H2
φ,ψ(g0) functions N,

both supported inM \ , the inequality(2.12)holds. If the weights are such that the map

K
⊥g
0 ∩ (H̊k+3

φ,ψ (g)× H̊k+4
φ,ψ (g))→ K

⊥g
0 ∩ (H̊k+1

φ,ψ (g)× H̊kφ,ψ(g)),

(Y,N)  → π
K
⊥g
0
ψ−2

{(
J

ρ

)
[(K, g)+ ψ212P∗

ε (Y,N)] −
(
J

ρ

)
(K, g)

}
(3.2)

is differentiable in a neighborhood of zero, then it is bijective in a(perhaps smaller) neigh-
borhood of zero, for all ε small enough. In other words, for sufficiently smallε, there exists
δ > 0 such that for all(K, g) close to(K0, g0) in φ−1W

k+3,∞
φ (g0)×Wk+4,∞

φ (g0), and for

all pairs (δJ, δρ) ∈ ψ2(H̊k+1
φ,ψ (g)× H̊kφ,ψ(g)) with norm less thanδ, there exists a solution

(δK, δg) = 1ψ21P∗
ε (Y,N) ∈ ψ2(φHk+2

φ,ψ (g)× φ2Hk+2
φ,ψ (g)), (3.3)

close to zero, of the equation

π
K
⊥g
0
ψ−2

{(
J

ρ

)
(K + δK, g+ δg)−

(
J

ρ

)
(K, g)

}
= π

K
⊥g
0
ψ−2

(
δJ

δρ

)
. (3.4)

The solutions of the form(3.3)with sufficiently small norm are unique.

Proof. Instead of(3.4)we consider the projection of the equation(
J

ρ

)
((K, g)+ ψ212P∗

ε (Y,N))−
(
J

ρ

)
(K, g) =

(
δJ

δρ

)
. (3.5)
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If ε is small enough then(Kε, gε) is close to(K, g) in φ−1W
k+3,∞
φ (g0)×Wk+4,∞

φ (g0) thus
close to(K0, g0) in the same space. Because of the high differentiability threshold assumed
all the coefficients in the equations are inL∞

loc, and it is easy to check that the operatorP∗
ε

converges toP∗ whenε goes to zero in such a way that the estimates in Appendix G of[12]
remain uniform. It follows that forε small enoughP∗

ε can be used in place ofP∗ to define
the right inverse needed in the arguments of Appendix G of[12]. �

One would like to use elliptic estimate arguments to show that if(K, g) is smooth, and if
(δJ, δρ) is smooth, then the solution is smooth. We have not been able to implement such
an argument in the spaces used above because of poor differentiability of the coefficients of
the equations. This has the effect that the size of the neighborhood for which the theorem
applies might depend uponk. This problem will be sidetracked by working in weighted
Hölder spaces.

4. Analysis in weighted Hölder spaces

Before passing to an analysis of the regularizedequation (2.16), let us show that the
results established in[12] can be used to obtain a Fréchet manifold of smooth solutions of
constraint equations without KIDs.

In order to obtain a coherent set-up in weighted Hölder spaces we will need to impose
some more conditions on the weight functionsφ, ϕ, andψ:

1. First, note that(2.5) can be rewritten asφ ∈ C-−1
φ,φ−1, ψ ∈ C-−1

φ,ψ−1, ϕ ∈ C-−1
φ,ϕ−1. When

dealing with Hölder spaces one also needs to assume Hölder continuity of the derivative
weights, so (renaming-− 1 to-) we will assume:

φ ∈ C-,α
φ,φ−1, ψ ∈ C-,α

φ,ψ−1, ϕ ∈ C-,α
φ,ϕ−1. (4.1)

2. As discussed in[12, Appendix B], the following conditions are useful for deriving the
scaling property: Let us denote byBp the open ball of centerp with radiusφ(p)/2. We
assume that there exist constantsC1, C2, C3 > 0 such that for allp ∈ M and ally ∈ Bp,
we have

C−1
1 φ(p) ≤ φ(y) ≤ C1φ(p), (4.2)

C−1
2 ϕ(p) ≤ ϕ(y) ≤ C2ϕ(p), (4.3)

C−1
3 ψ(p) ≤ ψ(y) ≤ C3ψ(p). (4.4)

3. Since the tool to handle non-linearities in this paper is the inverse function theorem, we
need to make sure that the changes in the initial data are small as compared to the data
themselves. A necessary condition for that is that the new metric be uniformly equivalent
to the original one. One way of ensuring this is

ψ2φ2C
k,α
φ,ϕ(g0) ⊂ Ck,αφ,1(g0). (4.5)

This will hold under the following condition.
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Proposition 4.1. The inequality

ψ2φ2ϕ−1 ≤ C (4.6)

implies(4.5).

In order to check this the reader might wish to prove first that the conditions imposed
so far imply that

Lemma 4.2. If u ∈ Ck,αφ,ϕ1
(g) andv ∈ Ck,αφ,ϕ2

(g), with one of theϕa’s satisfying(4.3)and

φ satisfying(4.1)with - ≥ k, then uv ∈ Ck,αφ,ϕ1ϕ2
(g).

Lemma 4.2can be used to show an equivalent ofLemma 2.1in weighted Hölder
spaces.

Clearly all those conditions are fulfilled whenφ = ϕ = ψ = 1; they will also be fulfilled
in the other examples of interest discussed inSection 6.

To proceed further some terminology will be needed.

Definition 4.3. We will say that an operatorL fromH̊3
φ,ψ×H̊4

φ,ψ toH̊1
φ,ψ×H̊0

φ,ψ satisfies
theweighted elliptic regularity conditionif there exists a constantC such that for all(Y,N)
in H̊3

φ,ψ × H̊4
φ,ψ satisfyingL(Y,N) ∈ Ck+1,α

φ,ϕ × Ck,αφ,ϕ we have(Y,N) ∈ Ck+3,α
φ,ϕ × Ck+4,α

φ,ϕ

with

‖(Y,N)‖
C
k+3,α
φ,ϕ ×Ck+4,α

φ,ϕ
≤ C

(
‖L(Y,N)‖

C
k+1,α
φ,ϕ ×Ck,αφ,ϕ + ‖(Y,N)‖H3

φ,ψ×H4
φ,ψ

)
. (4.7)

WhenLφ,ψ defined in(2.10)satisfies the weighted elliptic regularity condition one has
the following proposition.

Proposition 4.4 (Proposition 3.16 of[12]). Let k ∈ N, 0 < α < 1, assume that(4.1)
with - ≥ k + 4 holds, and that(4.2)–(4.4)and(4.6)hold. In addition to the hypotheses of
Theorem 3.1with ε = 0, suppose thatg0 ∈ Ck+4,α, and that

Ric(g0) ∈ φ−2C
k+2,α
φ,1 (g0), K0 ∈ φ−1C

k+3,α
φ,1 (g0).

We further assume that the weightsφ, ϕ andψ have thescaling property.Suppose, next,
that we have the continuous inclusions

ψ2φ2C
i,α

φ,ϕ2(g) ⊂ H̊ iφ,ψ(g) (4.8)

for i = k, k+1,with the inclusion norms uniformly bounded for g close tog0 inCk+4,α
φ,1 (g0).

Assume finally thatLφ,ψ(K, g) satisfies the weighted elliptic regularity condition, with a

uniform constant C in(4.7) for (K, g) close to(K0, g0) in φ−1C
k+3,α
φ,1 (g0)×Ck+4,α

φ,1 (g0). If

the source(δJ, δρ) is inψ2(H̊1
φ,ψ(g)×H̊0

φ,ψ(g))∩ψ2(C
k+1,α
φ,ϕ (g)×Ck,αφ,ϕ(g)),with sufficiently

small norm, then the solution obtained inTheorem 3.1with ε = 0 is in

ψ2(φH̊2
φ,ψ(g)× φ2H̊2

φ,ψ(g)) ∩ ψ2(φC
k+2,α
φ,ϕ (g)× φ2C

k+2,α
φ,ϕ (g)).
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Proposition 4.4gives existence of Hölder continuous solutions. We can apply the usual
bootstrap arguments to those solutions to obtain smoothness, when all the objects at hand
are smooth (compare the proof ofTheorem 4.9).

Proposition 4.5(Proposition 3.17 of[12]). Let k ∈ N, α ∈ (0,1), assume that(4.1)with
- ≥ k + 4 holds, and that(4.2)–(4.4)and (4.6) hold. Suppose moreover that the scaling
property holds. Assume that(K, g) ∈ Ck+3,α ×Ck+4,α and(Y,N) ∈ C3,α

φ,ϕ(g)×C4,α
φ,ϕ(g). If(

J

ρ

)
[(K, g)+ ψ212P∗

(K,g)(Y,N)] −
(
J

ρ

)
[(K, g)] ∈ ψ2(C

k+1,α
φ,ϕ (g)× Ck,αφ,ϕ(g)),

(4.9)

then(Y,N) ∈ Ck+3,α
φ,ϕ (g)× Ck+4,α

φ,ϕ (g)), thus

(δK, δg) ∈ ψ2(φC
k+2,α
φ,ϕ (g)× φ2C

k+2,α
φ,ϕ (g)). (4.10)

Example 2.4(continued). Applying the last two propositions to the setup ofExample 2.4
one finds that smooth solutions of the linearized constraint equations correspond to smooth
solutions of the full non-linear constraint equations. This leads then to a Fréchet mani-
fold of smooth solutions near every smooth solution. The argument at the end of proof of
Theorem 5.2justifies the isomorphism property on the overlaps of the coordinate charts,
and we have therefore obtained the Fischer–Marsden–Moncrief result.

Theorem 4.6(Fischer et al.[21]). Let M be a compact manifold with boundary. Then the
level setsS of the constraints map form a submanifold of the set of smooth(K, g)’s at all
(K, g) which have no KIDs. Each connected componentS0 thereof is a Fréchet manifold
modeled onKerP(K,g) ⊂ C∞ × C∞, where(K, g) is an arbitrary element ofS0.

Specializing all the considerations so far to the caseK ≡ Y ≡ 0 one recovers a theorem
essentially due to Fischer and Marsden.

Theorem 4.7(Fischer and Marsden[19]). Let M be a compact manifold with boundary.
Then the level sets of the scalar curvature functional on the space of smooth metrics form a
submanifold at all g which do not correspond to the space-part of some static solution of the
vacuum Einstein equations with a cosmological constant. Each connected componentS0
thereof is a Fréchet manifold modeled on the kernel of DR, as calculated at some arbitrarily
chosen metricg ∈ S0.

The argument of the proof ofTheorem 3.1also establishes the following proposition.

Proposition 4.8. Under the conditions ofProposition 4.4, assume that(3.1)holds, and sup-
pose thatψ−2Pψ212P∗

ε satisfies the weighted elliptic regularity condition,with the constant

C in (4.7)being uniform for(K, g) close to(K0, g0) in φ−1C
k0+3,α
φ,1 (g0)×Ck0+4,α

φ,1 (g0) and
ε small enough. ThenProposition 4.4remains valid with k replaced byk0 andP∗ replaced
byP∗

ε whenε is small enough.
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Our first main result is the equivalent ofProposition 4.5with less regularity conditions
on (K, g).

Theorem 4.9. Let k ∈ N, k ≥ 2, α ∈ (0,1), assume that(4.1)with - ≥ k + 4 holds, and
that (4.2)–(4.4)and (4.6) hold. Under(3.1), suppose that the scaling condition holds for
ε > 0.Assume that(K, g) ∈ Ck+2,α×Ck+2,α and(Y,N) ∈ C3,α

φ,ϕ(g)×C4,α
φ,ϕ(g). For ε small,

if (
J

ρ

)
[(K, g)+ ψ212P∗

ε (Y,N)] −
(
J

ρ

)
[(K, g)] ∈ ψ2(C

k+1,α
φ,ϕ (g)× Ck,αφ,ϕ(g)),

(4.11)

then(Y,N) ∈ Ck+3,α
φ,ϕ (gε)× Ck+4,α

φ,ϕ (gε), thus

(δK, δg) ∈ ψ2(φC
k+2,α
φ,ϕ (g)× φ2C

k+2,α
φ,ϕ (g)).

Remark 4.10. The appearance ofε in the claim that(Y,N) ∈ Ck+3,α
φ,ϕ (gε)× Ck+4,α

φ,ϕ (gε) is
due to the fact thatg is a priori not sufficiently differentiable to be able to define spaces
such asCk+3,α

φ,ϕ (gε). Any fixed metric uniformly equivalent tog, with appropriate weighted
differentiability properties, could be used instead ofgε in the definition of those spaces.

Proof. It suffices to rewrite the rescaled non-linear ellipticequation (4.9)for (Y,N) as a
linear elliptic equation for(Y,N) and freeze coefficients (depending on(K + δK, g + δg)
hence on(Y,N)). The interior Hölder estimates[28, Theorem 6.2.5, p. 223]on the sets
 ̂α appearing in the definition of scaling property give the local regularity, and the scaling
property gives the global weighted regularity. �

5. Banach manifold structure

Throughout this section the symbolg0 denotes a fixed metric with (local) regularity
Cm+4,α onM.

Fork, l ∈ {0, . . . , m+ 4}, α ∈ (0,1) andg a metric inCmax(l,k),α, we define the Banach
space

�
l,k,α
φ,ψ,ϕ(g) = H̊ lφ,ψ(g) ∩ Ck,αφ,ϕ(g),

equipped with a norm being the sum of the two norms. (It should be clear from(4.10)that
this is the topology which one needs to use on the space of the metrics when using the
methods described above.) Whenk ∈ {0, . . . , m + 2} and when(4.5)hold, we define the
following opensubset ofψ2φ2�

2,k+2,α
φ,ψ,ϕ (g0) of symmetric two-covariant tensor fields on

M:

Ak+2,α
φ,ψ,ϕ (g0) :=

{
h ∈ ψ2φ2�

2,k+2,α
φ,ψ,ϕ (g0),

g0 + h is a metric uniformly equivalent tog0

}
.
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We note the continuous inclusions:

Ak+2,α
φ,ψ,ϕ (g0) ⊂ ψ2φ2�

2,k+2,α
φ,ψ,ϕ (g0) ⊂ Ck+2,α

φ,1 (g0)(⊂ Wk+2,∞
φ (g0)). (5.1)

We have the following lemma.

Lemma 5.1. Letk ∈ {0, . . . , m+2} andl ∈ {0, . . . , k+2}. Assume(4.1)–(4.5). Then for
all h ∈ Ak+2,α

φ,ψ,ϕ (g0) we have

C
l,α
φ,ϕ(g0 + h) = Cl,αφ,ϕ(g0), H̊ lφ,ψ(g0 + h) = H̊ lφ,ψ(g0)

with equivalent norms. In particular,

Ak+2,α
φ,ψ,ϕ (g0 + h) = Ak+2,α

φ,ψ,ϕ (g0).

Proof. Let g = g0 + h, we defineT = < − <0, sinceg is uniformly equivalent tog0 the
usual formula forT allows one to estimate this byC|∇0h|g0. By the middle inclusion in

(5.1)we then haveT ∈ φ−1C
k+1,α
φ,1 (g0). For a tensoru, we have‖u‖g0 uniformly equivalent

to ‖u‖g. For the derivatives we write

∇u = ∇0u+ (∇ − ∇0)u = ∇0u− Tu.

If u ∈ Cl,αφ,ϕ(g0)by the productLemma 4.2we obtainφ∇u ∈ C0,α
φ,ϕ(g). The higher derivatives

follow by induction. This shows thatCl,αφ,ϕ(g0) ⊂ Cl,αφ,ϕ(g).
We note that the above implies that−h ∈ ψ2φ2C

k+2,α
φ,ϕ (g), and the reverse inclusion

follows by symmetry.
The proof for the Sobolev spaces is identical. �

Theorem 5.2. Letk ∈ {2, . . . , m} andα ∈ (0,1), and

Ric(g0) ∈ φ−2C
k,α
φ,1(g0), K0 ∈ φ−1C

k+2,α
φ,1 (g0). (5.2)

Suppose that the scaling property and the weighted regularity condition hold, and that
(4.1)–(4.4)together with(4.6)are satisfied. Assume also that for all10

(Q, h) ∈ ψ2φ�
2,k+2,α
φ,ψ,ϕ (g0)×Ak+2,α

φ,ψ,ϕ (g0) (5.3)

there exists a compact set ⊂ M such that for allH̊1
φ,ψ(g0) vector fields Y and̊H2

φ,ψ(g0)

functions N, both supported inM \ , the inequality(2.12) holds with(K0, g0) there
replaced by(K0 +Q, g0 + h). Suppose, further, that for all (Q, h) as in(5.3) the map

(δK, δg)→ (J, ρ)(K0 +Q+ δK, g0 + h+ δg)− (J, ρ)(K0 +Q, g0 + h) (5.4)

is differentiable from a neighborhood of zero inψ2φH̊2
φ,ψ(g0) × ψ2φ2H̊2

φ,ψ(g0)

toψ2H̊1
φ,ψ(g0)×ψ2H̊0

φ,ψ(g0). Consider any non-empty connected component of the set of
KID-free level-sets:

10 Actually it suffices to assume that this hypothesis holds onSJ0,ρ0.
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SJ0,ρ0 =
{
(Q, h) ∈ ψ2φ�

2,k+2,α
φ,ψ,ϕ (g0)×Ak+2,α

φ,ψ,ϕ (g0),

(J, ρ)(K0 +Q, g0 + h) = (J0, ρ0),KerP∗
K0+Q,g0+h = {0}

}
. (5.5)

If there exists a smoothing operation(3.1) with k0 = 0, thenSJ0,ρ0 is an embedded sub-

manifold ofψ2φ�
2,k+2,α
φ,ψ,ϕ (g0)×Ak+2,α

φ,ψ,ϕ (g0).

Remark 5.3. Differentiability of the map(5.4) in weighted Sobolev spaces typically re-
quiresk > n/2, this can be actually avoided by requiring instead differentiability of(5.4)
as a map fromψ2φ�

2,k+2,α
φ,ψ,ϕ (g0)×ψ2φ2�

2,k+2,α
φ,ψ,ϕ (g0) toψ2�

1,k+1,α
φ,ψ,ϕ (g0)×ψ2�

0,k,α
φ,ψ,ϕ(g0).

Remark 5.4. We note that a necessary condition forSJ0,ρ0 �= ∅ is

J0 ∈ φ−2C
k+1,α
φ,1 (g0), ρ0 ∈ φ−2C

k,α
φ,1(g0). (5.6)

In any case it seems that the situation of main interest isJ0 = ρ0 = 0.

Remark 5.5. The kernel in(5.5)is that of the operatorP∗
K0+Q,g0+h acting fromH1

φ,ψ×H2
φ,ψ

to φ−1H0
φ,ψ × φ−2H0

φ,ψ. We note that elliptic regularity shows that elements of the kernel
are as differentiable as the metric allows, so the elements of the kernel are continuously
differentiable solutions satisfying appropriate asymptotic properties.

Remark 5.6. We do not assume that(J0, ρ0) = (J, ρ)(K0, ρ0). Even if this last equality
holds,(0,0) will fail to be in SJ0,ρ0 if there are KIDs at(K0, g0).

Remark 5.7. We do not assume(Q, h) to be small.

Remark 5.8. Some rather general conditions which guarantee existence of smoothing
operators(3.1)are given inAppendix B.

Proof. We wish to applyLemma A.1with x = (δK, δg) and

u = Du(0) = ψ212P∗
ε,(K0+Q0,g0+h0)

,

v(x) = ψ−2[(J, ρ)(K0 +Q0 + δK, g0 + h0 + δg)− (J, ρ)(K0 +Q0, g0 + h0)],

Dv(0) = ψ−2PK0+Q0,g0+h0,

E = �3,k+3,α
φ,ψ,ϕ (g0)×�4,k+4,α

φ,ψ,ϕ (g0),

F = ψ21(�
2,k+2,α
φ,ψ,ϕ (g0)×�2,k+2,α

φ,ψ,ϕ )(g0),

G = �1,k+1,α
φ,ψ,ϕ (g0)×�0,k,α

φ,ψ,ϕ(g0).

We start by verifying that

Lε := ψ−2PK0+Q0,g0+h0ψ
212P∗

ε,(K0+Q0,g0+h0)

is an isomorphism fromE toG. We wish to useTheorem 2.2with (K0, g0) there replaced
with (K0 +Q0, g0 + h0), and withk there equal zero; the needed regularity conditions on
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Ric(g0 + h0) can be established by the calculations ofLemma 5.1using(5.2) (recall that
k ≥ 2), while the condition onK0 +Q0 follows immediately from(5.2). The remaining
conditions are satisfied by hypothesis. Since there are no KIDs we conclude thatLε=0 ≡
Lφ,ψ (see(2.10)) is an isomorphism from̊H3

φ,ψ(g0 + h0)× H̊4
φ,ψ(g0 + h0) toH̊1

φ,ψ(g0 +
h0)×H̊0

φ,ψ(g0 + h0); those spaces coincide with the ones based ong0 by Lemma 5.1. The
hypothesis of the existence of the smoothing operation(3.1) with k there equal 0 implies
thatP∗

ε →ε→0 P in the space of linear maps from̊H3
φ,ψ×H̊4

φ,ψ toφ−1H̊2
φ,ψ×φ−2H̊2

φ,ψ. It

follows thatLε is an isomorphism from̊H3
φ,ψ ×H̊4

φ,ψ toH̊1
φ,ψ ×H̊0

φ,ψ for ε small enough.
SoLε is injective onE. The weighted elliptic regularity condition implies Hölder regularity
of the solution, and surjectivity follows.

We leave it as an exercise to the reader to prove the following lemma usingLemma 4.2
together with the arguments inLemma 5.1.

Lemma 5.9. Under the conditions ofTheorem 5.2, the map(5.4) is smooth from a neigh-
borhood of zero inψ2φC

k+2,α
φ,ϕ (g0)× ψ2φ2C

k+2,α
φ,ϕ (g0) toψ2C

k+1,α
φ,ϕ (g0)× ψ2C

k,α
φ,ϕ(g0).

This does not suffice to prove differentiability ofv, because of the topology involved;
however, differentiability with respect to the Sobolev topology holds by hypothesis.

It follows that near(Q0, h0) the setSJ0,ρ0 is an embedded submanifold modeled on the
kernel ofPK0+Q0,g0+h0.

Remark 5.10. The proof above actually gives a foliation of a neighborhood of(Q0, h0)

in F = ψ21(�
2,k+2,α
φ,ψ,ϕ (g0)×�2,k+2,α

φ,ψ,ϕ (g0)). Indeed, under the conditions ofTheorem 5.2
we can useLemma A.2from Appendix Awith the same spaces as those inTheorem 5.2
and withL = u. For all (Q0, h0) ∈ SJ0,ρ0, there is a neighborhoodV of zero inG =
�

1,k+1,α
φ,ψ,ϕ (g0)×�0,k,α

φ,ψ,ϕ(g0), such that{
(Q, h) ∈ ψ2φ�

2,k+2,α
φ,ψ,ϕ (g0)×Ak+2,α

φ,ψ,ϕ (g0),

(J, ρ)(K0 +Q, g0 + h) = (J0, ρ0)+ (δJ, δρ),KerP∗
K0+Q,g0+h = {0}

}
(δJ,δρ)∈V

is a foliation. As we can do that for all points(Q0, h0) ∈ SJ0,ρ0, we obtain a foliation of a
neighborhood ofS(J0,ρ0) in F .

In fact, if we denote byF0 the open subset ofψ2φ�
2,k+2,α
φ,ψ,ϕ (g0)×Ak+2,α

φ,ψ,ϕ (g0) of elements
(Q, h) such that

KerP∗
K0+Q,g0+h = {0},

then the map fromF0 toG defined by

f(Q, h) = (J, ρ)(K0 +Q, g0 + h)− (J, ρ)(K0, g0)

is a submersion. In particular the levels sets

{(Q, h) ∈ F0, f(Q, h) = (δJ, δρ)}(δJ,δρ)∈G,
provide a foliation ofF0.

For completeness we note the following result.
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Corollary 5.11. Every non-empty connected component ofSJ0,ρ0 defined in(5.5) is a

Banach manifold modeled on the kernel ofPK0+Q0,g0+h0 in ψ21(�
2,k+2,α
φ,ψ,ϕ ×�2,k+2,α

φ,ψ,ϕ ) for
an (arbitrarily chosen) (Q0, h0) ∈ SJ0,ρ0.

Proof. An embedded submanifold of a Hausdorff space is necessarily Hausdorff. The local
coordinate patches are provided by the maps which modelSon its tangent spaces constructed
in the proof ofTheorem 5.2. It remains to show that all the kernels are(Q, h)-independent.
The proof ofTheorem 5.2shows that for all(Q, h) ∈ SJ0,ρ0 there exists a neighborhood
thereof inSJ0,ρ0 which is arc-connected. It then follows that a connected component of
SJ0,ρ0 is in fact arc-connected, by observing that the set of metrics inSJ0,ρ0 which can
be connected to a fixed metric inSJ0,ρ0 by a continuous curve contained inSJ0,ρ0 is open
and closed inSJ0,ρ0. Thus for two couples(Q0, h0) ∈ SJ0,ρ0 and(Qp, hp) ∈ SJ0,ρ0, there
exists an arcγ in SJ0,ρ0 from one to the other. For each pointx = (Q, h) ∈ γ, there exists
anrx > 0 such thatSJ0,ρ0 ∩ BF(x, rx) is diffeomorphic to an open subset of the kernel of
P(K+Q,g+h). Asγ is compact, there exists a finite number of points{xi = (Qi, hi) ∈ γ, i =
0, . . . , p} such that the union of theBF(xi, rxi )’s coversγ. This provides a finite chain of
diffeomorphisms, a composition of which identifies the kernel ofP(K+Q0,g+h0) with that
of P(K+Qp,g+hp). �

6. Applications

6.1. Compact manifolds without boundary

In this section we applyTheorem 5.2to the case whereM is a compact manifold without
boundary. As already pointed out, in this case we take

φ = ψ = ϕ = 1,

then the spaces we work with are the standard (non-weighted) Sobolev and Hölder spaces.

Theorem 6.1. Let k ≥ 2 and α ∈ (0,1). Let g0 ∈ Ck+2,α, K0 ∈ Ck+2,α. Then any
non-empty connected component of the set

SJ0,ρ0 =
{
(Q, h) ∈ Ck+2,α ×Ak+2,α

1,1,1 ,

(J, ρ)(K0 +Q, g0 + h) = (J0, ρ0),KerP∗
K0+Q,g0+h = {0}

}
is an embedded submanifold ofCk+2,α × Ck+2,α.

In Theorem 6.1the kernel of the operatorP∗
K0+Q,g0+h can be taken as that of an operator

from H1 × H2 to H0 × H0, or fromC1 × C2 to C0 × C0, or fromCk+1,α × Ck+2,α to
Ck,α × Ck,α.
6.2. Asymptotically flat manifolds without boundary

In this section we applyTheorem 5.2to the case whereM is an asymptotically flat
manifold without boundary and with compact interior; by definition, this means thatM is the
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union of a compact set with a finite number of regions, called ends, which are diffeomorphic
to R

n \ B(0, R) for someR. We denote bŷδ some arbitrarily chosen metric ofCm+4,α

differentiability class which coincides with the Euclidean one in the asymptotically flat
regions. Here and in the following sections the indexm corresponds to the differentiability
of the background, typicallym = ∞ will be appropriate, however in some situations it
might be useful to have a background with finite differentiability. The weight functions are
φ = r, withϕ andψ—powers ofr in the asymptotic regions, which are easily seen to satisfy
(4.1)–(4.4)in the asymptotic regions. We extend the functionr to a smooth strictly positive
function in the compact region, then the requirements on the weight functions are satisfied
globally. It is convenient to relabel the̊Hkr,rα and theCk,αr,rs spaces as follows: choose some
m ∈ N, for k ∈ {0, . . . , m+ 4}, α ∈ (0,1) andβ ∈ R we set

= H̊k
r,r−n/2−β (δ̂), C

β

k,α = Ck,αr,r−β (δ̂).
Forλ ∈ R we define

�λk,α = �2,k,α
r,r−n/2−λ,r−λ = ∩ Cλk,α. (6.1)

We also define fork ≥ 2:

Mk,α = {g is a metric uniformly equivalent tôδ,

g− δ̂ ∈ C0
k,α, |∇(l)δ̂ (g− δ̂)|δ̂ = o(r

−l), 0 ≤ l ≤ 2}. (6.2)

Forγ ≥ 0 andk ≤ m+ 2 we let

A−γ
k+2,α = A2,k+2,α

r,rn/2−2−γ ,r−γ−2+n(δ̂) ⊂ C−γ
k+2,α ⊂ C0

k+2,α.

This corresponds toψ = rn/2−2−γ , ϕ = r−γ−2+n, and sinceφ = r the condition(4.6)
holds precisely forγ ≥ 0. The choice of weights here is justified by Theorem 7.7 in[12].

With the labeling above, a metric such thatg − δ̂ ∈ Aβk+2,α with β ≤ 0 clearly differs

from the Euclidean metric by O(rβ). In order to see that this is actually O(rβ), for i ∈ N

large set

<i = <(i, i+ 1) = B(0, i+ 1) \ B(0, i).
Let f ∈ ∩ Cβ1 and letxi ∈ <̄i be any point such that

|f(xi)| = sup
y∈<i

|f(y)|.

If ‖f‖
C
β
1
= 0 there is nothing to prove, otherwise letC = (7/8)β−1, set

ri = min

(
1

8
,
|f(xi)|i−β
2C‖f‖

C
β
1

)
i.

Fory ∈ B(xi, ri) we have

|f(y)− f(xi)| ≤
(

sup
z∈B(xi,ri)

|Df|(z)
)
|y − xi| ≤ C‖f‖Cβ1 i

β−1|y − xi| ≤ |f(xi)|
2

,
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which implies∫
B(xi,ri)

f 2(y)|y|−2β−ndny ≥ C′
(
f(xi)

2iβ

)2 ( ri
i

)n
.

The left-hand-side goes to zero asi goes to infinity by the dominated convergence theorem,
which easily implies the result.

The reference metricg0 will be taken to be such thatg0 ∈ Mk+2,α. The referenceK0

can be taken to be zero, but anyK0 ∈ C−1
k+2,α withK0 = o(r−1) will do; this last condition

ensures that the -set condition ofTheorem 5.2holds, see[12, Section 7]for details.
We take the smoothing operation to be the one inAppendix B.1, the only thing which

needs to be checked is the uniform covering condition(B.3): We write

R
n \ B(0, R) = ∞∪

i=0
<(2iR,2i+1R).

Now <(1,2) can be covered by a finite numberN of ball’s B(xj, |xj|/8) with xj ∈
<(1,2). Then<(2iR,2i+1R) can be covered byN ballsB(2iRxj,2i−3R|xj|) with 2iRxj ∈
<(2iR,2i+1R). It is then clear thatRn \ B̄(0, R) can be covered by a countable set of balls
B(yk, |yk|/8) with the property that for allk ∈ N,

#{l, B(yl, 1
2|yl|) ∩ B(yk, 1

2|yk|) �= ∅} ≤ 3N,

as desired.
We note that the differentiability of the map(5.4) follows from the weighted equivalent

of the Schauder ring property ofHk ∩ L∞. All the remaining hypotheses ofTheorem 5.2
will be satisfied by[12] (compare Section 7 there) under the following conditions.

Theorem 6.2. Letm ∈ N, k ∈ {2, . . . , m}, α ∈ (0,1), g0 ∈Mk+2,α, K0 ∈ C−1
k+2,α with

K0 = o(r−1). Letβ ≥ 0,β /∈ {n− 2, n− 1}. Then any non-empty connected component of
the set of KID-free initial data:

SJ0,ρ0 =
{
(Q, h) ∈ �−β−1

k+2,α ×A−β
k+2,α,

(J, ρ)(K0 +Q, g0 + h) = (J0, ρ0),KerP∗
K0+Q,g0+h = {0}

}
is an embedded submanifold of�−β−1

k+2,α ×A−β
k+2,α.

In the above the kernel of the operatorP∗
K0+Q,g0+h is viewed as that of an operator from

× to × . Elliptic regularity implies that elements of this
kernel are classically differentiable KIDs such thatY = o(rβ+2−n), N = o(rβ+2−n). It is
known that for 0< β < n−2 there are no non-trivial such KIDs, so we obtain the following
corollary.

Corollary 6.3. Under the conditions ofTheorem 6.2, if β ∈ (0, n − 2) then all the level
sets of the constraints map
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(Q, h) ∈ �−t+1

k+2,α ×A−t+2
k+2,α, (J, ρ)(K0 +Q, g0 + h) = (J0, ρ0)

}
are embedded submanifolds of�−t+1

k+2,α ×A−t+2
k+2,α.

Thus, within the above set of weights the set of solutions of the vacuum constraint
equations does not have any manifold singularities. On the other hand, such singularities will
occur at solutions with KIDs if higher values ofβ are used. The interest of such higherβ’s
relies in the fact that the resulting manifolds of solutions possess fixed energy–momentum,
or angular momentum, or higher multipoles, depending upon the value ofβ.

6.3. Compact manifold with boundary

In this section we applyTheorem 5.2to the case wherēM is a compact manifold with
smooth boundary∂M. We wish to construct manifolds of initial data on̄M with prescribed
boundary values on∂M, as well as a prescribed number of transverse derivatives at the
boundary. Letγ be any fixed auxiliary Riemannian metric ofCm+4,α(M̄) differentiability
class. Letx ≥ 0 be a function that vanishes precisely on∂M, with dx nowhere vanishing
there. We start by considering power-law weighted spaces defined as

H̊sk = H̊k1,x−s−n/2(γ), Csk,α = Ck,αx,x−s (γ), �sk,α = �2,k,α
x,x−s−n/2,x−s = H̊s2 ∩ Csk,α.

We also define form+ 4 ≥ k ≥ 2:

Mk,α =
{
gmetric uniformly equivalent to

γ, g− γ ∈ C0
k,α, |∇(l)γ (g− γ)|γ = o(x−l), 0 ≤ l ≤ 2

}
(6.3)

(this differs from(6.2)by a different background metric and different functional spaces, we
hope that this ambiguity will not lead to confusions). Forσ ≥ 0 andm+ 2 ≥ k ≥ 0 we set

Aσk+2,α = Ak+2,α
x,xσ−2+n/2,xσ−2+n(γ) ⊂ Cσk+2,α ⊂ C0

k+2,α.

The first inclusion shows that metrics of the formg = γ + h with h ∈ Aσk+2,α approachγ
at∂M at least as O(xσ), and in fact an argument similar to the one inSection 6.2shows that
this is actually at least o(xσ). The above corresponds toφ = x,ϕ = xσ+n−2,ψ = xσ+n/2−2,
with the choices being justified as follows: In[12, Theorem 5.6]we obtain metrics such
thatδg is inH̊x,x−(s−n+2)−n/2 ∩ Cx,x−(s−n+2) . It is convenient to number the spaces according
to the decay rate ofδg near the boundary, so we setσ = s− n+ 2. In the current set-up we
haveδg in ψ2φ2(H̊φ,ψ ∩ Cφ,ϕ), which after straightforward algebra uniquely leads to the
weights above.

In order to obtain the required smoothing operator we use the results inAppendix B.1,
we need to justify the covering condition there. LetT > 0, we set

R
n
+ = {x = (x1, . . . , xn) ∈ R

n, xn > 0} =
∞⋃

i=−∞
B(2iT,21+iT),

whereB(2iT,2i+1T) = {x = (x1, . . . , xn) ∈ R
n,2iT < xn ≤ 2i+1T }. We have∂Rn+ =

{x ∈ R
n, xn = 0}. B(1,2) can be covered by closed cubes with edge sizes one, with
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pairwise intersections empty, or along the faces of the cubes. We choose one of those cubes,
call it K1, and we cover it byN(n) ballsB(xi, |xi|/8) with xi ∈ K1; every other cube in
B(1,2) will then be covered byN(n) balls by translating the balls coveringK1. We cover
B(1/2,1) with cubes of edge sizes 1/2, intersecting along the faces only, such that a cube
of B(1,2) intersects precisely 2n−1 cubes ofB(1/2,1). Each cube ofB(1/2,1) can be
covered byN(n) ballsB(xi, |xi|/8) with xi in that cube by scaling by 1/2 and translating
the balls coveringK1. An inductive repetition of the procedure leads to a covering ofR

n+
by a countable set of ballsB(yk, |yk|/8) with the property that for allk,

#{l, B(yl, 1
2|yl|) ∩ B(yk, 1

2|yk|) �= ∅} ≤ CnN(n)
for some constantCn. Working in local charts, and using partitions of unity, the above
construction provides the required covering near the boundary of a manifold.

We refer the reader to[12, Section 5]for a justification of the remaining hypotheses of
Theorem 5.2.

Theorem 6.4. Letk ∈ {2, . . . , m}, α ∈ (0,1), g0 ∈Mk+2,α,K0 ∈ C−1
k+2,α, with

x|K0|g0 + x2|∇K0|g0 →x→0 0.

For σ ≥ 0 whenn > 3 or σ > 0 any non-empty connected component of

SJ0,ρ0 =
{
(Q, h) ∈ �σ−1

k+2,α ×Aσk+2,α,

(J, ρ)(K0 +Q, g0 + h) = (J0, ρ0),KerP∗
K0+Q,g0+h = {0}

}
is an embedded submanifold of�σ−1

k+2,α ×Aσk+2,α.

Here the kernel of the operatorP∗
K0+Q,g0+h is, by elliptic regularity, a subspace of

(H̊−σ−n+2
1 × H̊−σ−n+2

2 ) ∩ (Ck+2(M̄)× Ck+2(M̄)).
For further reference we note the following result.

Proposition 6.5. Suppose that(K0, g0) ∈ (Ck+2,α × Ck+2,α)(M), k ≥ 2, α ∈ (0,1),
and let ⊂ M be a domain with smooth boundary and compact closure. For alls �=
(n+ 1)/2, (n+ 3)/2, the image of the linearization P, at (K0, g0), of the constraints map,
when defined on(�−s+1

k+2,α ×�−s+2
k+2,α)( ), is

(xn−2sK
⊥g0
0 ) ∩ (�−s

k+1,α ×�−s
k,α).

HereK0 is the space of KIDs which are in̊Hs−n1 × H̊s−n2 ⊂ (L2 × L2)( , x−2s+n dµg0),
and orthogonality is taken in(L2×L2)( , x−2s+n dµg0). In other words, the image of P is{

(J, ρ) ∈ �−s
k+1,α ×�−s

k,α such that〈(J, ρ), (Y,N)〉(L2⊕L2)( ,dµg0)
= 0

for all (Y,N) ∈ Hs−n1 ×Hs−n2 satisfyingP∗(Y,N) = 0
}
.

FurtherP−1(0) ⊂ �−s+1
k+2,α ×�−s+2

k+2,α splits.
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Proof. The proof of this result is essentially contained in that ofTheorem 6.4; the restriction
on the constantσ there arises from the requirement that the full non-linear constraint map
be well defined, but this restriction is not needed for the linearized problem. We note that
a closed space complementingP−1(0) is provided by Im(12ψ2P∗

ε ), for ε small enough
(compare the arguments inAppendix A), and thatP restricted to this space is an isomorphism
onto Im(P). �

Alternative useful weights are the exponential ones, for those we will useProposition B.5
to obtain the needed regularization. We take the following weight functions11

φ = x2, ψ = xn e−s/x, ϕ = x2n e−s/x.

With those choices we note that

Ak+2,α
x2,xn e−s/x,x2n e−s/x ⊂ ψ2φ2(Hφ,ψ ∩ Cφ,ϕ) = x4(H̊2

x2,x−n es/x ∩ Ck+2,α
x2,es/x

).

We define the space

M
exp
k,α =

{
gmetric uniformly equivalent toγ,

g− γ ∈ Ck,α
x2,1
, |∇(l)γ (g− γ)|γ = O(x−2l), 0 ≤ l ≤ 2

}
.

Using the results in Section 5 of[12] one now has the following theorem.

Theorem 6.6. Letk ∈ {2, . . . , m}, α ∈ (0,1), g0 ∈Mexp
k+2,α,K0 ∈ x−2C

k+2,α
x2,1

, with

x2|K0|g0 + x4|∇K0|g0 →x→0 0.

For s > 0 any non-empty connected component of

SJ0,ρ0 =
{
(Q, h) ∈ x2�

2,k+2,α
x2,x−n es/x,es/x

×Ak+2,α
x2,xn e−s/x,x2n e−s/x ,

(J, ρ)(K0 +Q, g0 + h) = (J0, ρ0),KerP∗
K0+Q,g0+h = {0}

}
is an embedded submanifold ofx2�

2,k+2,α
x2,x−n es/x,es/x

×Ak+2,α
x2,xn e−s/x,x2n e−s/x .

Here the kernel of the operatorP∗
K0+Q,g0+h is a subspace of̊H1

x2,xn e−s/x × H̊2
x2,xn e−s/x ;

but elliptic regularity shows that elements of the kernel are classically differentiable in the
interior, and it is standard to show that they are inCk+2(M̄)× Ck+2(M̄).

6.4. Conformally compactifiable manifolds

In this section we applyTheorem 5.2to the case whereM is a conformally compactifiable
manifold (with a compact conformal boundary at infinity), as in Section 6 of[12]. Letγ be

11 Theorem 5.9 and Proposition 5.10 of[12] provideδg in ψ2φ2(H̊φ,ψ ∩ Cφ,ϕ) = x4(H̊x2,x−n es/x ∩ Cx2,es/x ),
which leads to the choices of the weights above.
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Cm+4,α conformally compactifiable, so thatγ = x−2γ̄, with x—defining function for the
conformal boundary∂M, andγ̄—a Riemannian metric on̄M ofCm+4,α(M̄)differentiability
class. In that context, it is natural to define

H̊sk := H̊k1,x−s (γ) = H̊sk(γ̄),

Csk,α := Ck,α
x,x−s (γ̄) = Csk,α(γ̄),

�sk,α = �2,k+2,α
1,x−s,x−s (γ) = Csk,α ∩ H̊s2,

and fort ≥ 0,

Atk+2,α = Ak+2,α
1,xt ,xt (γ) ⊂ Ctk+2,α ⊂ C0

k+2,α.

The spaceMk,α is defined similarly to(6.3), but both the backgroundγ and the function
spaces involved are different now:

Mk,α =
{
gmetric uniformly equivalent toγ,

g− γ ∈ C0
k,α, |∇(l)γ (g− γ)|γ = o(1), 0 ≤ l ≤ 2

}
.

The same locally uniform covering as in the preceding section can be used here, so the
smoothing operator ofAppendix B.1applies, leading to

Theorem 6.7. Let k ∈ {2, . . . , m} and α ∈ (0,1). Let g0 ∈ Mk,α, K0 = λ0g0 + L0
with L0, λ0 ∈ C0

k+2,α, |L0|γ →x→0 0, |∇L0|γ →x→0 0. Let t ≥ 0, t /∈ {(n − 3)/2, (n −
1)/2, (n+ 1)/2}. Then any connected component of the set

SJ0,ρ0 =
{
(Q, h) ∈ �tk+2,α ×Atk+2,α,

(J, ρ)(K0 +Q, g0 + h) = (J0, ρ0),KerP∗
K0+Q,g0+h = {0}

}
is a submanifold of�tk+2,α × Atk+2,α. For 0 ≤ t < (n + 1)/2 the kernel condition is
automatically satisfied.

Here the kernel ofP∗
K0+Q,g0+h is that for a map fromH̊−t

1 × H̊−t
2 to H̊−t

0 × H̊−t
0 ; this

can also be reformulated in terms of classical differentiability in appropriately weighted
spaces.

Remarks similar to those followingCorollary 6.3concerning the value oft apply here.

Remark 6.8. For (Q, h) ∈ SJ0,ρ0 we have that|Q|γ = o(1) and|∇Q|γ = o(1).
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Appendix A. Submanifolds, foliations

The following is a variation of an argument in[17].

Lemma A.1. Let E, F and G be three Banach spaces, and let u(resp. v) be a map defined
from a neighborhood of0 in E (resp. F) to F (resp. G) such thatu(0) = 0 (resp.v(0) = 0)
and which is differentiable at0.We also assume that Dv(0)◦Du(0) is an isomorphism from
E to G. Then the setv−1(0) is a submanifold of F in a neighborhood of0.

Proof. Forx ∈ F ,

x= Du(0) ◦ [Dv(0) ◦ Du(0)]−1 ◦ Dv(0)(x)︸ ︷︷ ︸
∈ Im Du(0)

+ x− Du(0) ◦ [Dv(0) ◦ Du(0)]−1 ◦ Dv(0)(x)︸ ︷︷ ︸
∈Ker Dv(0)

.

(It easily follows thatF = Im Du(0)⊕Ker Dv(0), with both summands closed.) AsDv(0)◦
Du(0) is an isomorphism, the inverse function theorem shows thatv◦u is a diffeomorphism
in a neighborhood of 0, so forx ∈ F close to zero we have

x = u ◦ [v ◦ u]−1 ◦ v(x)︸ ︷︷ ︸
∈ Im u

+ x− u ◦ [v ◦ u]−1 ◦ v(x).

Let us define a map from a neighborhood of zero inF to F by

f(x) = x+ u ◦ [v ◦ u]−1 ◦ v(x)− Du(0) ◦ [Dv(0) ◦ Du(0)]−1 ◦ Dv(0)(x).

One clearly has

Df(0) = Id,

and the inverse function theorem shows thatf is a diffeomorphism in a neighborhood of
zero. We also have

x ∈ v−1(0)⇔ f(x) ∈ Ker Dv(0)

(for the “⇐” part we use the fact thatDv(0) ◦ u ◦ [v ◦ u]−1 is an isomorphism near zero),
sof provides the required map modelingv−1(0) on a linear space. �

Lemma A.1shows how to straighten-up a level set ofv; one can similarly show existence
of foliations by level sets.

Lemma A.2. Let E, F and G three Banach spaces, L a linear continuous map from E to F,
v a map defined from a neighborhood of a pointx0 in F to G, continuously differentiable
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nearx0. We assume that Dv(x0) ◦ L is an isomorphism from F to G. Then there exists a
neighborhood V ofy0 = v(x0) in G such that the collection of level sets ofv,

{x ∈ F, v(x) = y}y∈V ,
is a foliation of a neighborhood U ofx0 in F.

Proof. We have thatDv(x) ◦ L is a diffeomorphism forx ∈ F close tox0, one then has as
in Lemma A.1that

F = ImL⊕ Ker Dv(x),

and one easily checks that ImL is closed (recall that all maps are continuous). SoDv(x) is
surjective and its kernel splits. From[25, p. 21]the mapv is then a submersion nearx0. In
particular, again from[25, p. 20], there existU neighborhood ofx0 in F , V neighborhood
of y0 in G and two isomorphismsϕ : U → U1 × U2 (U1 andU2 open subset of some
Banach spaces) andψ : V → V2 (V2 open subset of some Banach spaces withU2 ⊂ V2)
such that

ψ ◦ v ◦ ϕ−1 : U1 × U2 → V2

is the projection on the second axis. This gives the desired foliation ofU. �

Appendix B. Two weighted smoothing operators

In this appendix we will show how to define smoothing operators as needed in the body
of the paper; this will require a set of conditions on the functionsφ andϕ, compatible with
the usual settings of interest in general relativity. The technique ofAppendix B.2seems
to be somewhat simpler than that ofAppendix B.1, and does not require any covering
conditions. However, covering conditions arise naturally when regularizing functions in
weighted Sobolev classes, therefore it seemed of interest to us to present both methods.

B.1. Smoothing with locally uniformly finite coverings

Throughout this appendix we assume that the manifoldM is an open subset ofRn,
equipped with an Euclidean metric (which is of course not the physical space metric we are
interested in), and we will be regularizing functions. The regularization can then be applied
to tensor fields on more general manifolds by using coordinate patches, partitions of unity,
and usual covering arguments.

We assume thatφ andϕ verify (4.1)–(4.3). For allp ∈ M, we denote byBp, the open
ball of centerp with radiusφ(p)/2. We require that12 for all p ∈ M,

B(p, φ(p)) ⊂ M. (B.1)

12 Eq. (B.1)can be replaced by the weaker condition that there existsµ > 0 such that for allp ∈ M we have
B(p,µφ(p)) ⊂ M, as changingφ to µφ for a positive constantµ leads to equivalent norms. So, e.g. in the
asymptotically flat case, one actually has to replace the weightφ = r for r ≥ R by φ = r/2R. Any such rescaling
leads to obvious changes in the hypotheses needed for the covering arguments below.
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Forρ ∈ [1,∞) we shall use the following notation:

B
ρ
i = B

(
pi,
φ(pi)

ρ

)
.

Our next restriction is that the manifold can be covered by a countable collection of balls
B8
i ,

M =
∞⋃
i=1

B8
i , (B.2)

such that there exists anN ∈ N so that for alli ∈ N,

#{j, B2
i ∩ B2

j �= ∅} ≤ N. (B.3)

Forp ∈ M, we set

ϕp : B(0, 1
2) % z  → p+ φ(p)z ∈ Bp.

This implies that for all functionsu onM and all multi-indicesγ we have

∂γz (u ◦ ϕp) = φ(p)|γ|(∂γu) ◦ ϕp.
Using(4.2) and (4.3)it is easy to see that we have the following lemma.

Lemma B.1. For ρ ∈ [2,8] the following norms onCk,αφ,ϕ(M) are equivalent:

‖u‖
C
k,α
φ,ϕ(M)

∼ sup
i∈N

‖u‖
C
k,α
φ,ϕ(B

ρ
i )

∼ sup
i∈N

‖u‖
C
k,α
φ(pi),ϕ(pi)

(B
ρ
i )

∼ sup
i∈N

‖u ◦ ϕpi‖Ck,α1,ϕ(pi)
(B(0,1/ρ)).

We now construct a convenient partition of unity.

Lemma B.2. There exists a partition of unity

∞∑
i=1

ζi = 1

with smooth functionsζi ≥ 0, andζi > 0 outsideB4
i , such that for alll ∈ N andα ∈ (0,1)

there exists a constantC(l, α) so that for alli ∈ N,

‖ζi‖Cl,αφ,1(M) ≤ C(l, α).

Proof. Let χ be a smooth non-negative function onR
n such thatχ = 1 onB(0,1/8) and

χ = 0 outsideB(0,1/4). We define

χi := χ ◦ ϕ−1
pi
, ζi := χi∑∞

j=1χj
.

Let us show that the sum in the definition above is well defined and greater than 1. If
x ∈ B4

i , there exists at mostN ballsB4
j , withN given by(B.3), such thatx ∈ B4

j . Sinceχj
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has support inB4
j , the sum atx is over a finite set. Ifx ∈ B8

i thenχi(x) = 1 thus the sum is

not less than 1. Ifx ∈ B4
i \ B8

i , from (B.2), xmust be in someB8
j thusχj(x) = 1 and then,

again, the sum is greater than or equal to 1.
Now,χi has compact support so is inCl,αφ,1(M), and fromLemma B.1

‖χi‖Cl,αφ,1(M) = ‖χi‖Cl,αφ,1(B4
i )
≤ C′‖χi ◦ ϕpi‖Cl,α1,1(B(0,1/4))

= C′‖χ‖
C
l,α
1,1(B(0,1/4))

=: C1,

whereC1 depends uponl andα but does not depend uponi. So we have that∥∥∥∥∥∥
∞∑
j=1

χj

∥∥∥∥∥∥
C
l,α
φ,1(B

2
i )

≤
∑

{j,B2
i ∩B2

j �=∅}
‖χj‖Cl,αφ,1(M) ≤ NC1,

and thus∥∥∥∥∥∥
∞∑
j=1

χj

∥∥∥∥∥∥
C
l,α
φ,1(M)

≤ NC1.

Finally, as the sum is greater than or equal to 1 it is easy to see that theζi’s satisfy the
desired properties. �

Let θ by any smooth strictly positive function onRn, with support inB(0,1) and such
that ∫

Rn
θ = 1.

For ε > 0 we set

θε(x) = 1

εn
θ
(x
ε

)
.

Foru a function onM andε > 0, we define

ui = ζiu, ûi = ui ◦ ϕpi,

ûi,ε = θε ∗ ûi, ui,ε = ûi,ε ◦ ϕ−1
pi
, uε =

∞∑
i=1

ui,ε

Proposition B.3. Let u ∈ Ck,αφ,ϕ(M). For all ε ∈ (0,1/4) and allm ∈ N we haveuε ∈
Cmφ,ϕ(M). Further, uε converges to u inCk,αφ,ϕ(M) asε goes to zero.

Proof. First remark that as theui’s have support inB4
i , then forε < 1/4 the functionsui,ε

have support inB2
i . It follows that onB2

i we have

uε =
∑

{j,B2
i ∩B2

j �=∅}
uj,ε.
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Lemmas B.1 and B.2together with standard properties of convolution inR
n imply

‖uε‖Ck,αφ,ϕ(B2
i )
≤

∑
{j,B2

i ∩B2
j �=∅}

‖uj,ε‖Ck,αφ,ϕ(B2
i )
=

∑
{j,B2

i ∩B2
j �=∅}

‖uj,ε‖Ck,αφ,ϕ(B2
i ∩B2

j )

≤
∑

{j,B2
i ∩B2

j �=∅}
‖uj,ε‖Ck,αφ,ϕ(B2

j )
≤ C

∑
{j,B2

i ∩B2
j �=∅}

‖ûj,ε‖Ck,α
φ(pj),ϕ(pj)

(B(0,1/2))

≤C
∑

{j,B2
i ∩B2

j �=∅}
‖ûj‖Ck,α

φ(pj),ϕ(pj)
(B(0,1/2))

≤C′ ∑
{j,B2

i ∩B2
j �=∅}

‖uj‖Ck,αφ,ϕ(B2
i )
≤ NC′′C(k, α)‖u‖

C
k,α
φ,ϕ(M)

.

In particularuε ∈ Ck,αφ,ϕ(M), with norm uniformly bounded inε. Let us now show that in

factuε is also inCk+lφ,ϕ (M) for anyl ≥ 0. First, we have

sup
B2
i

|ϕφk+l∂k+lui,ε| ≤ Csup
B2
i

|ϕ(pi)φk+l(pi)∂k+lui,ε| = C sup
B(0,1/2)

|ϕ(pi)∂k+lûi,ε|

≤ C‖∂lθε‖L1(B(0,1/2))‖ϕ(pi)∂kûi‖L∞(B(0,1/2))

=C 1

εl
‖∂lθ‖L1(Rn)‖ϕ(pi)∂kûi‖L∞(B(0,1/2))

≤ C′Cl
εl
‖ϕφk∂kui‖L∞(B2

i )
≤ C′′Cl

εl
‖u‖Ckφ,ϕ(M).

Thus we have

sup
B2
i

|ϕφk+l∂k+luε| ≤
∑

{j,B2
i ∩B2

j �=∅}
sup
B2
i ∩B2

j

|ϕφk+l∂k+luj,ε| ≤ NC′′′Cl
εl
‖u‖Ckφ,ϕ(M),

and then, usingLemma B.1,

sup
M

|ϕφk+l∂k+luε| ≤ NC′′′Cl
εl
‖u‖Ckφ,ϕ(M),

which givesuε ∈ Ck+lφ,ϕ (M) for anyl ≥ 0.

Let us pass now to the proof thatuε converges tou in Ck,αφ,ϕ(M). We have

‖ui,ε − ui‖Ck,αφ,ϕ(B2
i )
≤C‖ûi,ε − ûi‖Ck,α1,ϕ(pi)

(B(0,1/2))

≤C′εα‖ûi‖Ck,α1,ϕ(pi)
(B(0,1/2)) ≤ C′′εα‖u‖

C
k,α
φ,ϕ(M)

.

Thus asuε − u =∑∞
i=1(ui,ε − ui), onB2

i , we have

‖uε − u‖Ck,αφ,ϕ(B2
i )
≤

∑
{j,B2

i ∩B2
j �=0}

‖uj,ε − uj‖Ck,αφ,ϕ(B2
i ∩B2

j )
≤ NC′′εα‖u‖

C
k,α
φ,ϕ(B

2
i )
,
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then finally

‖uε − u‖Ck,αφ,ϕ(M) ≤ NC′εα‖u‖
C
k,α
φ,ϕ(M)

.

�

B.2. Smoothing using a weighted convolution

For the exponential weights considered inSection 6.3the uniform covering condition of
the previous section seems to be awkward to verify directly, if true. It is therefore convenient
to proceed differently. In what follows we will assume thatM is an open domain inRn, this
can again be gotten rid of by using partitions of unity and passing to local charts. As in the
preceding section, we assume thatφ andϕ satisfy(4.1)–(4.3)and that(B.1) holds.

Lemma B.4. The following norms onCk,αφ,ϕ(M) are equivalent:

‖u‖
C
k,α
φ,ϕ(M)

∼ sup
p∈M

‖u‖
C
k,α
φ,ϕ(Bp)

∼ sup
p∈M

‖u‖
C
k,α
φ(p),ϕ(p)

(Bp)
.

Foru ∈ Ck,αφ,ϕ(M) and forε ∈ (0,1/2), we define the smooth function onM (hereθ is as
in the preceding section):

ũε(x)=
∫
Rn

1

εnφ(x)n
θ

(
x− y
εφ(x)

)
u(y)dny

=
∫
y∈B(x,εφ(x))

1

εnφ(x)n
θ

(
x− y
εφ(x)

)
u(y)dny =

∫
z∈B(0,1)

θ(z)u(x−εφ(x)z)dnz.

Proposition B.5. Let u ∈ Ck,αφ,ϕ(M). For all ε ∈ (0,1/2) and allm ∈ N we haveũε ∈
Cmφ,ϕ(M). Further, ũε converges to u inCk,αφ,ϕ(M) asε goes to zero.

Proof. We first show that̃uε ∈ Ck,αφ,ϕ(M) with norm bounded independently ofε. We have

|ϕ(x)ũε(x)| ≤ sup
y∈Bn(x,εφ(x))

|ϕ(x)u(y)| ≤ C‖u‖
C
k,α
φ,ϕ(M)

,

where the last inequality comes fromLemma B.4. For the first derivatives, we have

∂iũε(x) =
∫
z∈Bn(0,1)

θ(z)∂ju(x− εφ(x)z)(δji − ε∂iφ(x)zj)dnz.

So fromEq. (2.5)andLemma B.4we have

|ϕ(x)φ(x)∂iũε(x)| ≤ C sup
y∈Bn(x,εφ(x))

|ϕ(x)φ(x)∂u(y)| ≤ C′‖u‖
C
k,α
φ,ϕ(M)

.

It should be clear that similar inequalities are true for thekth derivatives and for the Hölder
quotients, leading to

‖ũε‖Ck,αφ,ϕ(M) ≤ C‖u‖Ck,αφ,ϕ(M).
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We leave it as an exercise to the reader to show in a manner similar to that in the preceding
section that̃uε is in fact inCk+lφ,ϕ (M) for all l ∈ N.

Writing

ũε(x)− u(x) =
∫
z∈Bn(0,1)

θ(z)[u(x− εφ(x)z)− u(x)] dnz,

one similarly shows that

‖ũε − u‖Ck,αφ,ϕ(M) ≤ C‖u‖Ck,αφ,ϕ(M)ε
α,

so thatũε converges tou in Ck,αφ,ϕ(M) whenε goes to zero, as required. �
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